Prove or disprove each of the following statements. Write detailed proof structures and justify your work.

1. For all natural numbers n, if there is a natural number k such that $n=3 k+1$, then there is a natural number j such that $n^{2}=3 j+1$.
(Optional), write the statement symbolically, to help understand the structure:

$$
\forall n \in \mathbb{N},(\exists k \in \mathbb{N}, n=3 k+1) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=3 j+1\right)
$$

Now Try a direct proof:
Assume n is a generic natural number $\#$ in order to introduce \forall
Assume $\exists k \in \mathbb{N}, n=3 k+1 \quad \#$ in order to introduce \Rightarrow
Then $n^{2}=(3 k+1)^{2} \quad \#$ sub in k from assumption
Then $n^{2}=3\left(3 k^{2}+2 k\right)+1 \quad \#$ expand and factor 3 out
Then $\exists j \in \mathbb{N}, n^{2}=3 j+1 \quad \#$ pick $j=\left(3 k^{2}+2\right) \in \mathbb{N}$
\# since $3, k, 2 \in \mathbb{N}$, which is closed under + and \times
Then $\exists k \in \mathbb{N}, n=3 k+1 \Rightarrow \exists j \in \mathbb{N}, n^{2}=3 j+1 \quad \#$ introduced \Rightarrow
Conclude $\forall n \in \mathbb{N}(\exists k \in \mathbb{N}, n=3 k+1) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=3 j+1\right) \quad$ \# introduced \forall
2. For all real numbers r, s, if r and s are both positive, then $\sqrt{r}+\sqrt{s}=\sqrt{r+s}$.

It seems too good to be true, so try a disproof. First, write the negation symbolically to understand the structure:

$$
\exists r, s \in \mathbb{R},(r>0 \wedge s>0) \wedge \sqrt{r}+\sqrt{s} \neq \sqrt{r+s}
$$

Pick $r=1, s=1 \quad$ \# the first, and easiest, reals to work with to introduce \exists
Then $r, s \in \mathbb{R} \quad \# r=s=1 \in \mathbb{R}$
Then $r>0 \wedge s>0 \quad \# 1>0$
Then $\sqrt{r}+\sqrt{s}=\sqrt{1}+\sqrt{1}=1+1=2 \neq \sqrt{2}=\sqrt{1+1}=\sqrt{r+s} \quad \#$ substitute $r=s=1$ and arithmetic
Then $\exists r, s \in \mathbb{R},(r>0 \wedge s>0) \wedge \sqrt{r}+\sqrt{s} \neq \sqrt{r+s} \quad$ \# introduced \exists
3. For all real numbers r, s, if r and s are both positive, then $\sqrt{r}+\sqrt{s} \neq \sqrt{r+s}$.

First, write the statement symbolically:

$$
\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r>0 \wedge s>0 \Rightarrow \sqrt{r}+\sqrt{s} \neq \sqrt{r+s}
$$

Second, try a direct proof:
Assume $r \in \mathbb{R}$ and $s \in \mathbb{R}$.
Assume $r>0$ and $s>0$.
Then, $\sqrt{r}+\sqrt{s}=\ldots$ No obvious way to continue.
Next, try an indirect proof:
Assume $r \in \mathbb{R}$ and $s \in \mathbb{R}$.
Assume $\sqrt{r}+\sqrt{s}=\sqrt{r+s}$.
Then, $(\sqrt{r}+\sqrt{s})^{2}=(\sqrt{r+s})^{2}$. \# square both sides
Then, $(\sqrt{r})^{2}+2 \sqrt{r} \sqrt{s}+(\sqrt{s})^{2}=r+s$. \# expand both sides
Then, $2 \sqrt{r s}=0$. \# subtract $r+s$ from both sides
Then, $r s=0$. \# divide by 2 and square both sides

Then, $r=0 \vee s=0$.
\# Now, do a sub-proof by cases.
Assume $r=0$.
Then, $r \ngtr 0$.
Then, $r \ngtr 0 \vee s \ngtr 0$.
Then, $\neg(r>0 \wedge s>0)$.
Assume $s=0$.
Then, $s \ngtr 0$.
Then, $r \ngtr 0 \vee s \ngtr 0$.
Then, $\neg(r>0 \wedge s>0)$.
In either case, $\neg(r>0 \wedge s>0)$.
Then, $r>0 \wedge s>0 \Rightarrow \sqrt{r}+\sqrt{s} \neq \sqrt{r+s}$. \# introduced contrapositive Then, $\forall r \in \mathbb{R}, \forall s \in \mathbb{R}, r>0 \wedge s>0 \Rightarrow \sqrt{r}+\sqrt{s} \neq \sqrt{r+s}$.
4. For all real numbers x and $y, x^{4}+x^{3} y-x y^{3}-y^{4}=0$ exactly when $x= \pm y$.

First, write the statement symbolically (be careful to handle " \pm " correctly):

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{4}+x^{3} y-x y^{3}-y^{4}=0 \Leftrightarrow(x=y \vee x=-y)
$$

Second, start the proof structure for the universal quantifiers:
Assume $x \in \mathbb{R}$ and $y \in \mathbb{R}$.
\# To prove an equivalence, we prove the implication in each direction.
First assume $x^{4}+x^{3} y-x y^{3}-y^{4}=0$.
Then, $x^{3}(x+y)-y^{3}(x+y)=0$. \# factor out the expression
Then, $\left(x^{3}-y^{3}\right)(x+y)=0$. \# factor out the expression
Then, $x^{3}-y^{3}=0 \vee x+y=0 . \quad \# a b=0 \Leftrightarrow a=0 \vee b=0$
\# Now, do a sub-proof by cases.
Assume $x^{3}-y^{3}=0$.
Then, $x^{3}=y^{3} \quad \#$ add y^{3} to both sides
Then, $x=y \quad \#$ take cube roots on both sides
Then, $x=y \vee x=-y \quad \#$ introduce \vee
Assume $x+y=0$.
Then, $x=-y \quad \#$ subtract y from both sides
Then, $x=y \vee x=-y \quad \#$ introduce \vee
In either case, $x=y \vee x=-y$.
Then, $x^{4}+x^{3} y-x y^{3}-y^{4}=0 \Rightarrow x= \pm y$.
Next assume $x= \pm y$.
Then, $x=y \vee x=-y$. \# expand " \pm "
\# Now, do a sub-proof by cases.
Assume $x=y$.
Then, $x^{3}=y^{3}$. \# cube both sides
Then, $x^{3}-y^{3}=0$. \# subtract y^{3} from both sides
Then, $\left(x^{3}-y^{3}\right)(x+y)=0$. \# multiply both sides by $(x+y)$
Then, $x^{4}+x^{3} y-x y^{3}-y^{4}=0$. \# expand
Assume $x=-y$.
Then, $x+y=0$. \# add y to both sides
Then, $\left(x^{3}-y^{3}\right)(x+y)=0$. \# multiply both sides by $\left(x^{3}-y^{3}\right)$
Then, $x^{4}+x^{3} y-x y^{3}-y^{4}=0$. \# expand
In both cases, $x^{4}+x^{3} y-x y^{3}-y^{4}=0$.
Then, $x= \pm y \Rightarrow x^{4}+x^{3} y-x y^{3}-y^{4}=0$.
Then, $x^{4}+x^{3} y-x y^{3}-y^{4}=0 \Leftrightarrow x= \pm y . \quad \#$ introduce \Leftrightarrow
Then, $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{4}+x^{3} y-x y^{3}-y^{4}=0 \Leftrightarrow(x=y \vee x=-y)$.
(Notice how the detailed proof structure makes it easy to keep track of assumptions, and cases and sub-cases, and to know exactly when we are done.)

