1. Write the complete proof of each of the following statements. Note that, for the first two statements, we have already written down the proof structures in previous tutorial.
(a) $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$

Assume $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$.
Assume $x \leqslant y$.
Let $z^{\prime}=y$.
Then, $z^{\prime} \in \mathbb{Z} . \quad \#$ because $y \in \mathbb{Z}$
Then, $x \leqslant z^{\prime}$ and $z^{\prime} \leqslant y$. \# because $x \leqslant y$
Then, $\exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.
Then, $x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.
Then, $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.
(b) $\forall x \in \mathbb{Z},(\exists y \in \mathbb{Z}, x=3 y+1) \Rightarrow\left(\exists y \in \mathbb{Z}, x^{2}=3 y+1\right)$

Assume $x \in \mathbb{Z}$.
Assume $\exists y \in \mathbb{Z}, x=3 y+1$.
Let y_{0} be such that $x=3 y_{0}+1$. \# by assumption
Let $y^{\prime}=3 y_{0}^{2}+2 y_{0}$.
Then, $y^{\prime} \in \mathbb{Z}$.
Then, $x^{2}=\left(3 y_{0}+1\right)^{2}=\left(3 y_{0}\right)^{2}+2(1)\left(3 y_{0}\right)+1^{2}=9 y_{0}^{2}+6 y_{0}+1=3\left(3 y_{0}^{2}+2 y_{0}\right)+1=3 y^{\prime}+1$.
Then, $\exists y \in \mathbb{Z}, x^{2}=3 y+1$.
Then, $(\exists y \in \mathbb{Z}, x=3 y+1) \Rightarrow\left(\exists y \in \mathbb{Z}, x^{2}=3 y+1\right)$.
Then, $\forall x \in \mathbb{Z},(\exists y \in \mathbb{Z}, x=3 y+1) \Rightarrow\left(\exists y \in \mathbb{Z}, x^{2}=3 y+1\right)$.
(c) $\neg\left(\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y>x \wedge a_{y}>a_{x}\right)$-for the sequence $A=2,4,6,8,9,7,5,3,1,0,0,0,0,0, \ldots$

This statement is equivalent to:

$$
\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, y>x \Rightarrow a_{y} \leqslant a_{x}
$$

Let $x^{\prime}=8$.
Then, $x^{\prime} \in \mathbb{N}$.
Assume $y \in \mathbb{N}$.
Assume $y>x^{\prime}=8$.
Then, $a_{y}=0 . \quad \#$ because $a_{9}=a_{10}=a_{11}=\cdots=0$
Then, $a_{y} \leqslant 1=a_{8}=a_{x^{\prime}}$.
Then, $y>x^{\prime} \Rightarrow a_{y} \leqslant a_{x^{\prime}}$.
Then, $\forall y \in \mathbb{N}, y>x^{\prime} \Rightarrow a_{y} \leqslant a_{x^{\prime}}$.
Then, $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, y>x \Rightarrow a_{y} \leqslant a_{x}$.

