1. Write the *complete proof* of each of the following statements. Note that, for the first two statements, we have already written down the proof structures in previous tutorial.

(a)
$$\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$$

Assume $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$.
Assume $x \leqslant y$.
Let $z' = y$.
Then, $z' \in \mathbb{Z}$. # because $y \in \mathbb{Z}$
Then, $x \leqslant z'$ and $z' \leqslant y$. # because $x \leqslant y$
Then, $\exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.
Then, $x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.
Then, $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \leqslant y \Rightarrow \exists z \in \mathbb{Z}, x \leqslant z \leqslant y$.

(b)
$$\forall x \in \mathbb{Z}, (\exists y \in \mathbb{Z}, x = 3y + 1) \Rightarrow (\exists y \in \mathbb{Z}, x^2 = 3y + 1)$$

Assume $x \in \mathbb{Z}$.
Assume $\exists y \in \mathbb{Z}, x = 3y + 1$.
Let y_0 be such that $x = 3y_0 + 1$. # by assumption
Let $y' = 3y_0^2 + 2y_0$.
Then, $y' \in \mathbb{Z}$.
Then, $x^2 = (3y_0 + 1)^2 = (3y_0)^2 + 2(1)(3y_0) + 1^2 = 9y_0^2 + 6y_0 + 1 = 3(3y_0^2 + 2y_0) + 1 = 3y' + 1$.
Then, $\exists y \in \mathbb{Z}, x^2 = 3y + 1$.
Then, $\exists y \in \mathbb{Z}, x = 3y + 1$ $\Rightarrow (\exists y \in \mathbb{Z}, x^2 = 3y + 1)$.
Then, $\forall x \in \mathbb{Z}, (\exists y \in \mathbb{Z}, x = 3y + 1) \Rightarrow (\exists y \in \mathbb{Z}, x^2 = 3y + 1)$.

(c) $\neg(\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y > x \land a_y > a_x)$ — for the sequence $A = 2, 4, 6, 8, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, \dots$ This statement is equivalent to:

$$\exists x \in \mathbb{N}, orall y \in \mathbb{N}, y > x \Rightarrow a_y \leqslant a_x$$

Let
$$x' = 8$$
.
Then, $x' \in \mathbb{N}$.
Assume $y \in \mathbb{N}$.
Assume $y > x' = 8$.
Then, $a_y = 0$. # because $a_9 = a_{10} = a_{11} = \cdots = 0$
Then, $a_y \leqslant 1 = a_8 = a_{x'}$.
Then, $y > x' \Rightarrow a_y \leqslant a_{x'}$.
Then, $\forall y \in \mathbb{N}, y > x' \Rightarrow a_y \leqslant a_{x'}$.
Then, $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, y > x \Rightarrow a_y \leqslant a_x$.