office Hour: wed $2-3(?!)$ today.
CSC165 fall 2014
Mathematical expression

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/F14/ 416-978-5899

Course notes, chapter 3, 4

Outline direct proof umpleciton
assume A, derive C.
indirect proof imprecation
usisadiction Prove theine ab, derive $\rightarrow A$
Prove things about typical representative con inference rules of self.
assume $x \in \mathbb{R}, \ldots$. Conclude $\forall x \in \mathbb{R}$.
Prove the exiateres of $x \in D$, with property $P(y)$ asymptotics , Pick $x=\square$. show $x \subset D$ and $P(x)$
notes

get wrong right

Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and P, Q :

$$
S: \quad \forall x \in X, \forall y \in Y, P(x, y) \Rightarrow Q(x, y)
$$

To disprove S, should you prove:

$$
\begin{aligned}
& \forall x \in X, \forall y \in Y, P(x, y) \Rightarrow \neg Q(x, y) \\
& \forall x \in X, \forall y \in Y, P(x, y) \wedge^{\urcorner} Q(x, y)
\end{aligned}
$$

What about

$$
\forall x \in X, \forall y \in Y, \neg(P(x, y) \Rightarrow Q(x, y))
$$

Explain why, or why not.
\rightarrow ㅇ..

$$
\exists x \in X, \exists y
$$

$\exists x \in X, \exists y$

Define $T(n)$ by:

$$
\forall n \in \mathbb{N} \quad T(n) \Leftrightarrow \exists i \in \mathbb{N}, n=7 i+1
$$

Take some scrap paper, don't write your name on it, and fill in as much of the proof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T(n) \Rightarrow T\left(n^{2}\right)
$$

Now fill in as much of the disproof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T\left(n^{2}\right) \Rightarrow T(n)
$$

allowed inference

At this point you've been introduced to some rules of inference, that allow you to reach conclusions in certain situations. You may use these (see pages 44-46 of the course notes) to guide your thinking, or as marginal notes to justify certain steps:
conjunction elimination: If you know $A \wedge B$, you can conclude A separately (or B separately). too obvious?
existential instantiation: If you know that $\exists k \in X, P(k)$, then you can certainly pick an element with that property, let Scope of
Let $k^{\prime} \in X, P\left(k^{\prime} \in X, P\left(k^{\prime}\right) . \cdots\right.$ Then $k \in \mathbb{N}, n=2 k+1 \quad k ?$
disjunction elimination: If you know $A \vee B$, the additional information $\neg A$ results. allows you to conclude B.
implication elimination: If you know $A \Rightarrow B$, the additional information A allows you to conclude B. On the other hand, the know A,
additional information $\neg B$ allows you to conclude $\neg A$. know kn
universal elimination: If you know $\forall x \in X, P(x)$, the additional information $a \in X$ allows you to conclude $P(a)$.

more inferences

Here are some rules that allow you to introduce new logical

implication introduction: If you assume A and, under that assumption, B follows, than you can conclude $A \Rightarrow B$.
universal introduction: If you assume that a is a generic acoume $x \in \mathbb{R}$ element of D and, under that assumption, derive Let $x \in \mathbb{R}$ $P(a)$, then you can conclude $\forall a \in D, P(a)$.
existential introduction: If you show $x \in X$ and you show Pick $X=$
show $x \in X$$P(x)$, then you can conclude $\exists x \in X, P(x)$. show $x \in X$,
ond $P(x)$.
conjunction introduction: If you know A and you know B, then you can conclude $A \wedge B$.
disjunction introduction: If you know A you can conclude $A \vee B$.

sorting strategies

Which algorithm do you use to sort a 5-card euchre hand?

- selection sort
- some other sort? - MergeSort

If you use one of the first two, the number of "steps" you execute will more than quadruple if you graduate from euchre to a 13 -card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort on your cards, the change from euchre to bridge would roughly double your work.

We are most interested in how quickly running-time grows with the size of the problem, since these quickly swamp constant-factor differences between algorithms that are of the same "order."

different, but the same?

abstract.

Suppose you could count the "steps") required by an algorithm in some sort of platform-independent way. You would find that the steps required for insertion sort and selection sort on lists of size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by substantial constant factors, all quadratic functions are the "same" - they are in $\mathcal{O}\left(n^{2}\right)$.

$$
g(n)=n^{2} \quad f(n)=3 n^{2}+50
$$

$$
h(n)=15 n^{2}+n
$$

counting costs

want a coarse comparison of algorithms "speed" that ignores hardware, programmer virtuosity
which speed do we care about: best, worst, average? why?
define idealized "step" that doesn't depend on particular hardware and idealized "time" that counts the number of steps for a given input.

linear search

```
def \(\operatorname{LS}(A, x)\) :
    """ Return index i such that \(x==\) L[i]. Otherwise, ret
        \(i=0\)
2. while i < len (A) :
3. if \(\mathrm{A}[\mathrm{i}]==\mathrm{x}\) :
4. return i
5. \(\quad i=i+1\)
6. return -1
```

Trace $\operatorname{LS}([2,4,6,8], 4)$, and count the time complexity $t_{\mathrm{LS}}([2,4,6,8], 4)$

What is $t_{\mathrm{LS}}(A, x)$, if the first index where x is found is j ?
What is $t_{\mathrm{LS}}(A, x)$ is x isn't in A at all?

worst case

denote the worst-case complexity for program P with input $x \in I$, where the input size of x is n as $W_{P}(n)=\max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\}$

The upper bound $W_{P} \in \mathcal{O}(U)$ means

$$
\begin{aligned}
& \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \\
& \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \leq c U(n) \\
& \text { That is: } \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall x \in I, \operatorname{size}(x) \geq B \\
& \quad \Rightarrow t_{P}(x) \leq c U(\operatorname{size}(x))
\end{aligned}
$$

The lower bound $W_{P} \in \Omega(L)$ means

$$
\begin{aligned}
& \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \\
& \quad \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \geq c L(n)
\end{aligned}
$$

That is: $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B$

$$
\Rightarrow \exists x \in I, \operatorname{size}(x)=n \wedge t_{P}(x) \geq c L(n)
$$

bounding a sort

```
def IS(A) :
    """ IS(A) sorts the elements of A in non-decreasing orc
1. i = 1
2. while i < len(A) :
3. t = A[i]
4. j = i
5. while j > O and A[j-1] > t :
6.
        A[j] = A[j-1] # shift up
        j = j-1
8.
    A[j] = t
9.
    i = i+1
```

I want to prove that $W_{\text {IS }} \in \mathcal{O}\left(n^{2}\right)$.

Notes $\forall n \stackrel{\vee}{\in} \mathbb{N}, T(n) \Rightarrow T\left(n^{2}\right)$
Assume $n \in \mathbb{N}$
assums $T(n) \neq a_{n} t$ cedert
Then $n=7 i+1$, some $i \in \mathbb{N}$. It defn of $T(n)$
Then $n^{2}=(7 i+1)^{2}=49 i^{2}+14 i+1$ algetra.

$$
=7\left(7 i^{2}+2 i\right)+1
$$

\# mose algefra.
Then $\exists i_{0} \in \mathbb{N}, n^{2}=7 i_{0}+1, \neq i_{0}=7 i^{2}+2 i \in \mathbb{N}$

$$
\nexists \sin \operatorname{li}, i, 2 \in \mathbb{N}
$$

$$
\begin{aligned}
& \# \sin 7^{7}, i, 2 \in \mathbb{N} \\
& \# \text { and } \mathbb{N}^{\text {is closel anda }} \\
& \#+, x
\end{aligned}
$$

Then $T\left(n^{2}\right) \# \operatorname{defin}$

Condude $T(n) \Rightarrow T\left(n^{2}\right) \neq$ assumed A, deired C conclude $\forall n \in \mathbb{N}, T(n) \Rightarrow T\left(n^{2}\right) \notin \underset{\text { assumed }}{\text { resuld }} n \in \mathbb{N}$, gox

Notes disprove $\forall n \in \mathbb{N}, T\left(n^{2}\right) \Longrightarrow T(n)$.
prove $\left.\quad \exists n \in \mathbb{N}, T\left(n^{2}\right) \wedge\right\urcorner T(n)$
Pick $n=6$. Then $n \in \mathbb{N}$
Then $n^{2}=36$
Then $\exists i \in \mathbb{N}, n^{2}=7 i+1 \# i=5$ "works"
But $\neg(\exists k \in \mathbb{N}, n=7 k+1) \neq 6=7.0+6 \neq 1$
\# and remeinda 6 is
Then $T\left(n^{2}\right) \Lambda^{7} T(n)$.
\# unique

Conclude $\exists n \in \mathbb{N}, T\left(n^{2}\right) \Lambda^{\top} T(n)$

