
CSC165 fall 2014

Mathematical expression

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/F14/

416-978-5899

Course notes, chapter 3, 4

http://www.cdf.toronto.edu/~heap/165/F14/
http://www.cdf.toronto.edu/~heap/165/F14/notes.pdf


Outline

inference rules

asymptotics

notes

annotated slides



get wrong right

Be careful proving a claim false. Consider the claim, for some

suitably de�ned X ;Y and P ;Q :

S : 8x 2 X ;8y 2 Y ;P(x ; y)) Q(x ; y)

To disprove S , should you prove:

8x 2 X ;8y 2 Y ;P(x ; y)) :Q(x ; y)

What about

8x 2 X ; 8y 2 Y ;: (P(x ; y)) Q(x ; y))

Explain why, or why not.



De�ne T (n) by:

8n 2 N T (n), 9i 2 N;n = 7i + 1:

Take some scrap paper, don’t write your name on it, and �ll in

as much of the proof of the following claim as possible:

8n 2 N;T (n)) T (n2)

Now �ll in as much of the disproof of the following claim as

possible:

8n 2 N;T (n2)) T (n)



allowed inference

At this point you've been introduced to some rules of inference, that allow

you to reach conclusions in certain situations. You may use these (see

pages 44{46 of the course notes) to guide your thinking, or as marginal

notes to justify certain steps:

conjunction elimination: If you know A ^ B , you can conclude A

separately (or B separately).

existential instantiation: If you know that 9k 2 X ;P(k), then you can

certainly pick an element with that property, let

k
0 2 X ;P(k 0).

disjunction elimination: If you know A _ B , the additional information :A

allows you to conclude B .

implication elimination: If you know A) B , the additional information A

allows you to conclude B . On the other hand, the

additional information :B allows you to conclude :A.

universal elimination: If you know 8x 2 X ;P(x ), the additional

information a 2 X allows you to conclude P(a).



more inferences

Here are some rules that allow you to introduce new logical

structures

implication introduction: If you assume A and, under that

assumption, B follows, than you can conclude

A) B .

universal introduction: If you assume that a is a generic

element of D and, under that assumption, derive

P(a), then you can conclude 8a 2 D ;P(a).

existential introduction: If you show x 2 X and you show

P(x ), then you can conclude 9x 2 X ;P(x ).

conjunction introduction: If you know A and you know B , then

you can conclude A ^B .

disjunction introduction: If you know A you can conclude

A _B .



sorting strategies

Which algorithm do you use to sort a 5-card euchre hand?

I insertion sort

I selection sort

I some other sort?

If you use one of the �rst two, the number of \steps" you

execute will more than quadruple if you graduate from euchre

to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort

on your cards, the change from euchre to bridge would roughly

double your work.

We are most interested in how quickly running-time grows with

the size of the problem, since these quickly swamp

constant-factor di�erences between algorithms that are of the

same \order."



di�erent, but the same?

Suppose you could count the \steps" required by an algorithm

in some sort of platform-independent way. You would �nd that

the steps required for insertion sort and selection sort on lists of

size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by

substantial constant factors, all quadratic functions are the

\same" | they are in O(n2).

g(n) = n2 f (n) = 3n2 + 50 h(n) = 15n2 + n



counting costs

want a coarse comparison of algorithms \speed" that ignores

hardware, programmer virtuosity

which speed do we care about: best, worst, average? why?

de�ne idealized \step" that doesn't depend on particular

hardware and idealized \time" that counts the number of steps

for a given input.



linear search

def LS(A,x) :

""" Return index i such that x == L[i]. Otherwise, return -1 """

1. i = 0

2. while i < len(A) :

3. if A[i] == x :

4. return i

5. i = i + 1

6. return -1

Trace LS([2,4,6,8],4), and count the time complexity

tLS([2; 4; 6; 8]; 4)

What is tLS(A; x ), if the �rst index where x is found is j ?

What is tLS(A; x ) is x isn't in A at all?



worst case

denote the worst-case complexity for program P with input x 2 I , where

the input size of x is n as WP (n) = maxftP (x ) j x 2 I ^ size(x ) = ng

The upper bound WP 2 O(U ) means

9c 2 R+; 9B 2 N; 8n 2 N;n � B

) maxftP (x ) j x 2 I ^ size(x ) = ng � cU (n)

That is: 9c 2 R+; 9B 2 N; 8x 2 I ; size(x ) � B

) tP (x ) � cU (size(x ))

The lower bound WP 2 
(L) means

9c 2 R+;9B 2 N; 8n 2 N;n � B

) maxftP (x ) j x 2 I ^ size(x ) = ng � cL(n)

That is: 9c 2 R+; 9B 2 N; 8n 2 N;n � B

) 9x 2 I ; size(x ) = n ^ tP (x ) � cL(n)



bounding a sort

def IS(A) :

""" IS(A) sorts the elements of A in non-decreasing order """

1. i = 1

2. while i < len(A) :

3. t = A[i]

4. j = i

5. while j > 0 and A[j-1] > t :

6. A[j] = A[j-1] # shift up

7. j = j-1

8. A[j] = t

9. i = i+1

I want to prove that WIS 2 O(n
2).



Notes



annotated slides

I monday's annotated slides

I wednesday's annotated slides

http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W7/wednesday-annotated.pdf
http://www.cdf.toronto.edu/~heap/165/F14/Lectures/W7/wednesday-annotated.pdf

	inference rules
	asymptotics
	notes
	annotated slides

