CSC165 fall 2014
 Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/F14/
416-978-5899

Course notes, chapter 3

Outline

Computer Science

UNIVERSITY OF TORONTO
\square

a real inequality

Prove that for every pair of non-negative real numbers (x, y), if x is greather than y, then the geometric mean, $\sqrt{x y}$ is less than the arithmetic mean, $(x+y) / 2$.

some directions work better

Prove that for any natural number n, n^{2} odd implies that n is odd.

proving existence

To prove the a set is non-empty, it's enough to exhibit one element. How do you prove:

$$
\exists x \in \mathbb{R}, x^{3}+3 x^{2}-4 x=12
$$

prove a claim about a sequence

Define sequence a_{n} by:

$$
\forall n \in \mathbb{N} \quad a_{n}=n^{2}
$$

Now prove:

$$
\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_{j} \leq i \Rightarrow j<i
$$

contradiction - a special case of contrapositive

Define the prime natural numbers as
$P=\{p \in \mathbb{N} \mid p$ has exactly two distinct divisors in $\mathbb{N}\}$. How do you prove:

$$
S: \quad \forall n \in \mathbb{N},|P|>n
$$

It would be nice to have some result R that leads to S. If you could show $R \Rightarrow S$, and that R is true, then you'd be done. But, out of many elementary results, how do you choose an R ? Contradiction will often lead you there.

non-boolean functions

Take care when expressing a proof about a function that returns a non-boolean value, such as a number:

$$
\lfloor x\rfloor \text { is the largest integer } \leq x .
$$

Now prove the following statement (notice that we quantify over $x \in \mathbb{R}$, not $\lfloor x\rfloor \in \mathbb{R}$:

$$
\forall x \in \mathbb{R},\lfloor x\rfloor<x+1
$$

using more of the definition

You may have been disappointed that the last proof used only part of the definition of floor. Here's a symbolic re-writing of the definition of floor:
$\forall x \in \mathbb{R} \quad y=\lfloor x\rfloor \Leftrightarrow y \in \mathbb{Z} \wedge y \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq y)$
The full version of the definition should prove useful to prove:

$$
\forall x \in \mathbb{R},\lfloor x\rfloor>x-1
$$

proving something false

Define a sequence:

$$
\forall n \in \mathbb{N} \quad a_{n}=\lfloor n / 2\rfloor
$$

(of course, if you treat "/" as integer division, there's no need to take the floor. Now consider the claim:

$$
\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, j>i \Rightarrow a_{j}=a_{i}
$$

The claim is false. Disprove it.

proof by cases

Sometimes your argument has to split to take into account possible properties of your generic element:

$$
\forall n \in \mathbb{N}, n^{2}+n \text { is even }
$$

A natural approach is to factor $n^{2}+n$ as $n(n+1)$, and then consider the case where n is odd, then the case where n is even.

Notes

UNIVERSITY OF TORONTO
\square

annotated slides

－friday＇s annotated slides

〈 ミ 引

