#### CSC165 fall 2014

#### Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/F14/

Course notes, chapter 2-3

416-978-5899





#### Outline

mixed quantifiers

proof

notes

annotated slides

## transitivity

What does the following statement mean, when you interpret it as a venn diagram?

$$orall x \in X, (P(x) \Rightarrow Q(x)) \wedge (Q(x) \Rightarrow R(x))$$

For another insight, negate the following statement, and simplify it by transforming implications into disjunctions:

$$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$$



## for all, one...one for all

What's the difference between these two claims:

$$orall x \in S1, \exists y \in S2, x+y=5 \ \exists y \in S2, orall x \in S1, x+y=5$$

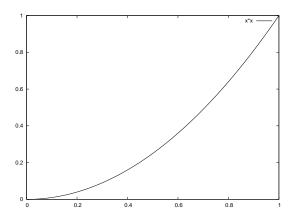
```
S1 = S2 = {1, 2, 3, 4}

def forall_exists(S1, S2):
    return all({any({x+y == 5 for y in S2}) for x in S1})

def exists_forall(S1, S2):
    return any({all({x+y == 5 for y in S1}) for x in S2})

if __name__ == '__main__':
    print(forall_exists(S1, S2))
    print(exists_forall(S1, S2))
```

Can you switch  $\forall e \in \mathbb{R}^+$  with  $\exists d \in \mathbb{R}^+$  without altering the truthfulness of the statement below?


$$\forall e \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, \forall x \in \mathbb{R}, |x - 0.6| < d \Rightarrow |x^2 - 0.36| < e$$

This latter is often written in a different form:

$$\lim_{x \to 0.6} x^2 = 0.36$$

First specify how close to 0.36  $x^2$  has to be (e), then I can choose how close to 0.6 x must be (d). If I choose d first, can it work for all e?

# graphically...



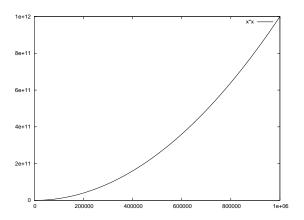
# are we close to infinity yet?

What is meant by phrases such as "as x approaches (gets close to) infinity,  $x^2$  increases without bound (sometimes 'becomes infinite')"? Or even

$$\lim_{x o \infty} x^2 = \infty$$

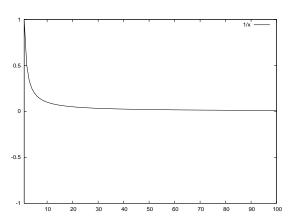
Look at the graph of  $x^2$ . Do either x or  $x^2$  ever reach infinity?

How about:


$$orall e \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, orall x \in \mathbb{R}, x > d \Rightarrow x^2 > e$$

Getting "close" to infinity means getting far from (and greater than) zero. Once you have a specification for how far from zero  $x^2$  must be (e), you can come up with how far from zero x must be (d). Can you choose a d in advance that works for all e?






# graph "approaching infinity"



# asymptotic

 $orall e \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, orall x \in \mathbb{R}, x > d \Rightarrow |1/x| < e$ 



# double quantifiers

There are (at least) three ways to claim that a certain subset of the cartesian product  $\mathbb{N} \times \mathbb{N}$ , aka  $\mathbb{N}^2$  is non-empty:

$$\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, m^2 = n$$
  
 $\exists (m, n) \in \mathbb{N}^2, m^2 = n$   
 $\exists n \in \mathbb{N}, \exists m \in \mathbb{N}, m^2 = n$ 

Whether we think of this as a statement about a subset of the cartesian product being empty, or a relation between non-empty subsets of  $\mathbb{N}$ , it is symmetrical.

There are (at least) three ways to claim that the entire cartesian product  $\mathbb{N} \times \mathbb{N}$  has some property:

$$egin{aligned} & orall m \in \mathbb{N}, orall n \in \mathbb{N}, mn \in \mathbb{N} \ & orall (m,n) \in \mathbb{N}^2, mn \in \mathbb{N} \ & orall n \in \mathbb{N}, orall m \in \mathbb{N}, mn \in \mathbb{N} \end{aligned}$$

Again, the order in which we consider elements of an ordered pair to investify of toronto doesn't change the logic.

## a proof foretold

A proof communicates why and how you believe something to be true. You'll need to master two things:

- 1. Understand why you believe the thing is true. This step is messy, creative, but then increasingly precise to identify (and then strengthen) the weak parts of your belief.
- 2. Write up (express) why you believe the thing is true. Each step of your written proof should be justified enough to convince a skeptical peer. If you detect a gap in your reasoning, you may have to go back to step 1.

Although I present a great deal of symbolic notation, we will accept carefully-structured, precise English prose. The structure, however, is required, and is a main topic of Chapter 3.

## find proof of universally-quantified $\Rightarrow$

To support a proof of a universally-quantified implication  $\forall x \in X, P(x) \Rightarrow Q(x)$ , you usually need to use some already-proven statements and axioms (defined, or assumed, to be true for X). You hope to find a chain

$$egin{array}{lll} C2.0 & orall x \in X, P(x) & \Rightarrow & R_1(x) \ C2.1 & orall x \in X, R_1(x) & \Rightarrow & R_2(x) \ & & dots \ C2.n & orall x \in X, R_n(x) & \Rightarrow & Q(x) \end{array}$$

Such a chain shows in n steps that  $P(x) \Rightarrow Q(x)$ , by transitivity.





#### proof outline

More flexible format required in this course. Each link in the chain justified by mentioning supporting evidence in a comment beside it. Here are portions of an argument where scope of assumption is shown by identation. A generic proof that  $\forall x \in X$ ,  $P(x) \Rightarrow Q(x)$  might look like:

Assume  $x \in X \# x$  is generic; what I prove applies to all of X

Assume P(x). # Antecedent. Otherwise,  $\neg P(x)$  means we get the implication for free.

Then  $R_1(x)$  # by previous result  $C2.0, \forall x \in X, P(x) \Rightarrow R_1(x)$ Then  $R_2(x)$  # by previous result  $C2.1, \forall x \in X, R_1(x) \Rightarrow R_2(x)$ .

Then Q(x) # by previous result  $C2.n, \forall x \in X, R_n(x) \Rightarrow Q(x)$ 

Then  $P(x) \Rightarrow Q(x) \# I$  assumed antecedent, got consequent (aka introduced  $\Rightarrow$ )

Then  $\forall x \in X, P(x) \Rightarrow Q(x) \; \# \; ext{reasoning works for all} \; x \in X$  computer Science UNIVERSITY OF TORONTO

# tracking the wiley chain of results

The hard part is finding that chain of implications. Here are two models for your search (they are equivalent).

- ▶ bubble search: As a venn diagram, you are search for a chain of supersets from P to Q. Work forwards (supersets of P) and backwards (subsets of Q). As soon as you find a set that's on both lists, you're done.
- ▶ tree search: As a directed graph, you are searching for a path from P to Q. Work forwards (consequents of P) and backwards (antecedents of Q). As soon as you find a predicate that's on both lists, you're done.



#### chains with $\wedge$ or $\vee$

Chains of antecedents consequents break up in asymmetrical ways. Use truth tables, venn diagrams, or rules for manipulating predicates to show

$$((P\Rightarrow R_1)\wedge (P\Rightarrow R_2))\Leftrightarrow (P\Rightarrow (R1\wedge R_2))$$

Notice that things switch when the conjunction is at the other end of the implication

$$((R_1 \Rightarrow Q) \land (R_2 \Rightarrow Q)) \Leftrightarrow ((R_1 \lor R_2) \Rightarrow Q)$$





## an odd example

The square of an odd number is odd. Prove:

 $\forall n \in \mathbb{N}, n \text{ odd } \Rightarrow n^2 \text{ odd }.$ 



## a real inequality

Prove that for every pair of non-negative real numbers (x, y), if x is greather than y, then the geometric mean,  $\sqrt{xy}$  is less than the arithmetic mean, (x + y)/2.

## Notes



#### annotated slides

- ▶ monday's annotated slides
- wednesday's annotated slides
- ► friday's annotated slides

