CSC165 Fall 2014, Assignment \#2

Due November 3rd, 10:00 p.m.

The aim of this assignment is for you to practice devising and presenting proofs. You may work in groups of no more than three students, and you should produce a single solution in a PDF file named a2.pdf, submitted to MarkUs.

You will receive 20% of the marks for any question you either leave blank, or write "I cannot answer this." You will receive 0 for any false claim you "prove," or any true claim you "disprove."

1. For $x \in \mathbb{R}$, define $\lfloor x\rfloor$ by:

$$
\lfloor x\rfloor \in \mathbb{Z} \wedge\lfloor x\rfloor \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor) .
$$

\ldots where \mathbb{Z} stands for the set of integers, and \mathbb{R} stands for the set of real numbers. Use the definition of $\lfloor x\rfloor$ to prove or disprove each of the following claims, using the structured proof technique from this course. Note: You must use the definition given here, not some other (possibly equivalent) definition for $\lfloor x\rfloor$.

Claim 1.1:

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor .
$$

Claim 1.2:

$$
\forall x \in \mathbb{R}, \forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e
$$

Claim 1.3:

$$
\exists x \in \mathbb{R}, \forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e
$$

Claim 1.4:

$$
\exists x \in \mathbb{R},\lfloor x+1\rfloor \neq\lfloor x\rfloor+1
$$

2. Prove or disprove the claim, and prove or disprove the converse:

Claim 2.1:

$$
\forall n \in \mathbb{N},(\exists k \in \mathbb{N}, n=5 k+2) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right)
$$

Claim 2.2:

$$
\forall m, n \in \mathbb{N},(\exists k \in \mathbb{N}, m=7 k+3) \wedge(\exists j \in \mathbb{N}, n=7 j+4) \Rightarrow(\exists i \in \mathbb{N}, m n=7 i+5)
$$

