CSC165 Fall 2014, Assignment \#2
 sample solutions

1. For $x \in \mathbb{R}$, define $\lfloor x\rfloor$ by:

$$
\lfloor x\rfloor \in \mathbb{Z} \wedge\lfloor x\rfloor \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor) .
$$

\ldots where \mathbb{Z} stands for the set of integers, and \mathbb{R} stands for the set of real numbers. Use the definition of $\lfloor x\rfloor$ to prove or disprove each of the following claims, using the structured proof technique from this course. Note: You must use the definition given here, not some other (possibly equivalent) definition for $\lfloor x\rfloor$.
Claim 1.1:

$$
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor .
$$

Sample solution: This claim is true. It says if a real number x is larger than another real number y, then x 's floor cannot be smaller than y 's floor. We present two proofs here, one directly uses the definition, the other uses contradiction.

Proof directly using definition:

Assume $x \in \mathbb{R}, y \in \mathbb{R}$ \# generic real numbers
Assume $x>y$ \# the antecedent
then $y<x$ \# reverse the inequality
and $\lfloor y\rfloor \leq y$ \# by definition of $\lfloor y\rfloor$
then $\lfloor y\rfloor \leq x$ \# transitivity of inequality, $\lfloor y\rfloor \leq y<x$
and $\lfloor y\rfloor \in \mathbb{Z}$ \# by definition of $\lfloor y\rfloor$
then $\lfloor y\rfloor \leq\lfloor x\rfloor$ \# by definition of $\lfloor x\rfloor$
then $\lfloor x\rfloor \geq\lfloor y\rfloor$ \# reverse the inequality
then $x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$ \# introduce antecedent
then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$ \# introduce \forall

Proof by contradiction:

Assume $\neg(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor)$ \# for the sake of contradiction
then $\exists x \in \mathbb{R}, y \in \mathbb{R},(x>y) \wedge(\lfloor x\rfloor<\lfloor y\rfloor)$ \# the negation
Let $x_{0} \in \mathbb{R}, y_{0} \in \mathbb{R}$ be such that $\left(x_{0}>y_{0}\right) \wedge\left(\left\lfloor x_{0}\right\rfloor<\left\lfloor y_{0}\right\rfloor\right)$
then $\left\lfloor x_{0}\right\rfloor<\left\lfloor y_{0}\right\rfloor$ \# conjunction elimination
and $\left\lfloor x_{0}\right\rfloor \in \mathbb{Z},\left\lfloor y_{0}\right\rfloor \in \mathbb{Z}$ \# by definition of floor
then $\left\lfloor x_{0}\right\rfloor+1 \leq\left\lfloor y_{0}\right\rfloor \#$ the smallest possible difference between two distinct integers is 1
then $\left\lfloor x_{0}\right\rfloor+1 \leq y_{0} \#$ since $\left\lfloor y_{0}\right\rfloor \leq y_{0}$ by definition of $\left\lfloor y_{0}\right\rfloor$
then $\left\lfloor x_{0}\right\rfloor+1<x_{0} \#$ since $y_{0}<x_{0}$ as how x_{0} and y_{0} are picked
and $\left\lfloor x_{0}\right\rfloor+1 \in \mathbb{Z} \#\left\lfloor x_{0}\right\rfloor \in \mathbb{Z}$ and $1 \in \mathbb{Z}$
then $\left\lfloor x_{0}\right\rfloor+1 \leq\left\lfloor x_{0}\right\rfloor$ \# by definition of $\left\lfloor x_{0}\right\rfloor$ that $\forall z \in \mathbb{Z}, z \leq x_{0} \Rightarrow z \leq\left\lfloor x_{0}\right\rfloor$
then $1 \leq 0$ \# subtract $\left\lfloor x_{0}\right\rfloor$ from both sides, and contradiction with that $1>0$ then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x>y \Rightarrow\lfloor x\rfloor \geq\lfloor y\rfloor$ \# negation of assumption because of contradiction

Claim 1.2:

$$
\forall x \in \mathbb{R}, \forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e
$$

Sample solution: This claim is false. Intuitively, this claim says for all x, when w is getting really really close to x then $\lfloor w\rfloor$ gets arbitrarily close to $\lfloor x\rfloor$. This is not quite true because, for example, 3.9999 is really close to 4 but $\lfloor 3.9999\rfloor=3$ is not that close at all to $\lfloor 4\rfloor=4$. So we will prove the negation of this claim which is

$$
\exists x \in \mathbb{R}, \exists e \in \mathbb{R}^{+}, \forall d \in \mathbb{R}^{+}, \exists w \in \mathbb{R},(|x-w|<d) \wedge(|\lfloor x\rfloor-\lfloor w\rfloor| \geq e)
$$

Proof:
Pick $x=4, e=0.5$, then $x \in \mathbb{R}$ and $e \in \mathbb{R}^{+}$
Assume $d \in \mathbb{R}^{+} \#$ a generic positive real number
Pick $w=4-0.9 d$
then $|x-w|=|4-(4-0.9 d)|=0.9 d<d$
and $w<4 \#$ add 4 to both sides of $-0.9 d<0$
then $\lfloor w\rfloor \leq 3 \#\lfloor w\rfloor \leq w<4$
also $\lfloor x\rfloor=\lfloor 4\rfloor=4$
then $\lfloor x\rfloor-\lfloor w\rfloor \geq 4-3=1 \geq 0.5=e \#-\lfloor w\rfloor \geq-3$
then $\lfloor x\rfloor-\lfloor w\rfloor \geq e$ \# transitivity of inequality
then $|\lfloor x\rfloor-\lfloor w\rfloor| \geq e \#$ absolute value of a positive number
then $(|x-w|<d) \wedge(|\lfloor x\rfloor-\lfloor w\rfloor| \geq e)$ \# conjunction introduction
then $\forall d \in \mathbb{R}^{+}, \exists w \in \mathbb{R},(|x-w|<d) \wedge(|\lfloor x\rfloor-\lfloor w\rfloor| \geq e)$ \# introduce \forall
then $\exists x \in \mathbb{R}, \exists e \in \mathbb{R}^{+}, \forall d \in \mathbb{R}^{+}, \exists w \in \mathbb{R},(|x-w|<d) \wedge(|\lfloor x\rfloor-\lfloor w\rfloor| \geq e)$ \# introduce \exists

Claim 1.3:

$$
\exists x \in \mathbb{R}, \forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e
$$

Sample solution: This claim is true. It says that there exists a point x such that when w gets really close to $x,\lfloor w\rfloor$ gets arbitrarily close to $\lfloor x\rfloor$. From the previous proof, we learned that points like $x=4$ are not good examples because the floor function is not continuous (or, is "jumping") at these points; however, any other points except these "jumping" points would be continuous and valid examples for this claim, such as $x=4.5$.

Proof:

Pick $x=4.5$, then $x \in \mathbb{R}$
Assume $e \in \mathbb{R}^{+} \#$ a generic positive real number
Pick $d=0.49$, then $d \in \mathbb{R}^{+}$
Assume $w \in \mathbb{R} \#$ a generic real number
Assume $|x-w|<d \#$ assume the antecedent of the \Rightarrow
then $-d<w-x<d \#|x|<a \Leftrightarrow-a<x<a$
then $x-d<w<x+d$
then $4.01<w<4.99 \# x=4.5, d=0.49$
then $\lfloor w\rfloor=4 \#$ by definition of floor
and $\lfloor x\rfloor=\lfloor 4.5\rfloor=4 \# x=4.5$ as picked and definition of floor
then $|\lfloor x\rfloor-\lfloor w\rfloor|=|4-4|=0$
then $|\lfloor x\rfloor-\lfloor w\rfloor|<e \# e \in \mathbb{R}^{+}$
then $|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e \#$ introduce antecedent
then $\forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e \#$ introduce \forall
then $\exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e \#$ introduce \exists
then $\forall e \in \mathbb{R}^{+} \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e \#$ introduce \forall
then $\exists x \in \mathbb{R}, \forall e \in \mathbb{R}^{+} \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R},|x-w|<d \Rightarrow|\lfloor x\rfloor-\lfloor w\rfloor|<e \#$ introduce \exists
Claim 1.4:

$$
\exists x \in \mathbb{R},\lfloor x+1\rfloor \neq\lfloor x\rfloor+1
$$

Sample solution: This claim is false. We will prove the negation of this statement which is.

$$
\forall x \in \mathbb{R},\lfloor x+1\rfloor=\lfloor x\rfloor+1
$$

We will prove the equality $a=b$ by proving $(a \leq b) \wedge(b \leq a)$. The key is to make wise use of the definition of the floor, especially the " $z \leq x \Rightarrow z \leq\lfloor x\rfloor$ " part.
Proof:
Assume $x \in \mathbb{R} \#$ a generic real number x
then $\lfloor x\rfloor \leq x$ \# by definition of $\lfloor x\rfloor$
then $\lfloor x\rfloor+1 \leq x+1$ \# add 1 to both sides
then $\lfloor x\rfloor+1 \leq\lfloor x+1\rfloor \#\lfloor x\rfloor+1 \in \mathbb{Z}$ and by definition of $\lfloor x+1\rfloor$
also $\lfloor x+1\rfloor \leq x+1$ \# by definition of $\lfloor x+1\rfloor$
then $\lfloor x+1\rfloor-1 \leq x$ \# subtract 1 from both sides
then $\lfloor x+1\rfloor-1 \leq\lfloor x\rfloor \#\lfloor x+1\rfloor-1 \in \mathbb{Z}$ and by definition of $\lfloor x\rfloor$
then $\lfloor x+1\rfloor \leq\lfloor x\rfloor+1$ \# add 1 to both sides
then $(\lfloor x\rfloor+1 \leq\lfloor x+1\rfloor) \wedge(\lfloor x+1\rfloor \leq\lfloor x\rfloor+1)$ \# conjunction introduction
then $\lfloor x+1\rfloor=\lfloor x\rfloor+1 \#(a \leq b \wedge b \leq a) \Leftrightarrow a=b$
then $\forall x \in \mathbb{R},\lfloor x+1\rfloor=\lfloor x\rfloor+1 \#$ introduce \forall
2. Prove or disprove the claim, and prove or disprove the converse:

Claim 2.1:

$$
\forall n \in \mathbb{N},(\exists k \in \mathbb{N}, n=5 k+2) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right)
$$

Sample solution: The original claim is true, the proof is similar to what we did in the lectures and tutorials. The converse of this claim is false, because $n=3, n^{2}=9$ would be a counterexample.

Proof of the original:

Assume $n \in \mathbb{N} \#$ a generic natural number
Assume $\exists k \in \mathbb{N}, n=5 k+2 \#$ the antecedent
Let $k_{0} \in \mathbb{N}$ be such that $n=5 k_{0}+2$
then $n^{2}=\left(5 k_{0}+2\right)^{2}=25 k_{0}^{2}+20 k_{0}+4=5\left(5 k_{0}^{2}+4 k_{0}\right)+4$
Let $j=5 k_{0}^{2}+4 k_{0}$, then $j \in \mathbb{N} \# k_{0}, 5,4 \in \mathbb{N}$
then $n^{2}=5 j+4$
then $\exists j \in \mathbb{N}, n^{2}=5 j+4$
then $(\exists k \in \mathbb{N}, n=5 k+2) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right)$ \# introduce antecedent then $\forall n \in \mathbb{N},(\exists k \in \mathbb{N}, n=5 k+2) \Rightarrow\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right) \#$ introduce \forall

The negation of the converse of the claim is

$$
\exists n \in \mathbb{N},\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right) \wedge \neg(\exists k \in \mathbb{N}, n=5 k+2)
$$

Proof of the negation of converse:

Pick $n=3$, then $n \in \mathbb{N}$
then $n^{2}=9=5 \times 1+4$
then $\exists j \in \mathbb{N}, n^{2}=5 j+4 \# 1 \in \mathbb{N}$
also $n=3=5 \times 0+3$
then $\neg(\exists k \in \mathbb{N}, n=5 k+2) \#$ uniqueness of remainder
then $\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right) \wedge \neg(\exists k \in \mathbb{N}, n=5 k+2)$ \# conjunction introduction
then $\exists n \in \mathbb{N},\left(\exists j \in \mathbb{N}, n^{2}=5 j+4\right) \wedge \neg(\exists k \in \mathbb{N}, n=5 k+2)$ \# introduce \exists

Claim 2.2:

$$
\forall m, n \in \mathbb{N},(\exists k \in \mathbb{N}, m=7 k+3) \wedge(\exists j \in \mathbb{N}, n=7 j+4) \Rightarrow(\exists i \in \mathbb{N}, m n=7 i+5)
$$

Sample solution: The original claim is true. The converse of this claim is false, because we can easily find a counter-example such as $m=1, n=5$.

Proof of the original:

Assume $m, n \in \mathbb{N} \#$ two generic natural numbers
Assume $(\exists k \in \mathbb{N}, m=7 k+3) \wedge(\exists j \in \mathbb{N}, n=7 j+4) \#$ the antecedent
Let $k_{0} \in \mathbb{N}$ be such that $m=7 k_{0}+3$, and $j_{0} \in \mathbb{N}$ be such that $n=7 j_{0}+4$
then $m n=\left(7 k_{0}+3\right)\left(7 j_{0}+4\right)=49 k_{0} j_{0}+28 k_{0}+21 j_{0}+12$

$$
=7\left(7 k_{0} j_{0}+4 k_{0}+3 j_{0}+1\right)+5
$$

Let $i=7 k_{0} j_{0}+4 k_{0}+3 j_{0}+1$
then $m n=7 i+5$
then $\exists i \in \mathbb{N}, m n=7 i+5$
then $(\exists k \in \mathbb{N}, m=7 k+3) \wedge(\exists j \in \mathbb{N}, n=7 j+4) \Rightarrow(\exists i \in \mathbb{N}, m n=7 i+5)$
then $\forall m, n \in \mathbb{N},(\exists k \in \mathbb{N}, m=7 k+3) \wedge(\exists j \in \mathbb{N}, n=7 j+4) \Rightarrow(\exists i \in \mathbb{N}, m n=7 i+5)$

The negation of the converse of the claim is

$$
\exists m, n \in \mathbb{N},(\exists i \in \mathbb{N}, m n=7 i+5) \wedge[\neg(\exists k \in \mathbb{N}, m=7 k+3) \vee \neg(\exists j \in \mathbb{N}, n=7 j+4)]
$$

Proof of the negation of converse:
Pick $m=1, n=5$, then $m, n \in \mathbb{N}$
then $m n=1 \times 5=5=7 \times 0+5$
then $\exists i \in \mathbb{N}, m n=7 i+5 \# 0 \in \mathbb{N}$
also $m=1=7 \times 0+1$
then $\neg(\exists k \in \mathbb{N}, m=7 k+3)$ \# uniqueness of remainder
then $\neg(\exists k \in \mathbb{N}, m=7 k+3) \vee \neg(\exists j \in \mathbb{N}, n=7 j+4)$ \# disjunction introduction
then $(\exists i \in \mathbb{N}, m n=7 i+5) \wedge[\neg(\exists k \in \mathbb{N}, m=7 k+3) \vee \neg(\exists j \in \mathbb{N}, n=7 j+4)]$
then $\exists m, n \in \mathbb{N},(\exists i \in \mathbb{N}, m n=7 i+5) \wedge[\neg(\exists k \in \mathbb{N}, m=7 k+3) \vee \neg(\exists j \in \mathbb{N}, n=7 j+4)]$
\# introduce \exists

