CSC165 Fall 2014, Assignment #2 sample solutions

1. For $x \in \mathbb{R}$, define $\lfloor x \rfloor$ by:

 $\lfloor x
floor \in \mathbb{Z} \land \lfloor x
floor \leq x \land (\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq \lfloor x
floor)).$

... where \mathbb{Z} stands for the set of integers, and \mathbb{R} stands for the set of real numbers. Use the definition of $\lfloor x \rfloor$ to prove or disprove each of the following claims, using the structured proof technique from this course. Note: You must use the definition given here, not some other (possibly equivalent) definition for $\lfloor x \rfloor$.

Claim 1.1:

$$orall x \in \mathbb{R}, orall y \in \mathbb{R}, x > y \Rightarrow \|x\| \geq \|y\|$$
 .

Sample solution: This claim is true. It says if a real number x is larger than another real number y, then x's floor cannot be smaller than y's floor. We present two proofs here, one directly uses the definition, the other uses contradiction.

Proof directly using definition:

Assume $x \in \mathbb{R}, y \in \mathbb{R} \#$ generic real numbers

Assume x > y # the antecedent

then $y < x \ \#$ reverse the inequality and $\lfloor y \rfloor \leq y \ \#$ by definition of $\lfloor y \rfloor$ then $\lfloor y \rfloor \leq x \ \#$ transitivity of inequality, $\lfloor y \rfloor \leq y < x$ and $\lfloor y \rfloor \in \mathbb{Z} \ \#$ by definition of $\lfloor y \rfloor$ then $\lfloor y \rfloor \leq \lfloor x \rfloor \ \#$ by definition of $\lfloor x \rfloor$ then $\lfloor x \rfloor \geq \lfloor y \rfloor \ \#$ reverse the inequality then $x > y \Rightarrow \lfloor x \rfloor \geq \lfloor y \rfloor \ \#$ introduce antecedent then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow \lfloor x \rfloor \geq \lfloor y \rfloor \ \#$ introduce \forall

Proof by contradiction:

Assume $\neg(\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow \lfloor x \rfloor \geq \lfloor y \rfloor) \ \#$ for the sake of contradiction then $\exists x \in \mathbb{R}, y \in \mathbb{R}, (x > y) \land (\lfloor x \rfloor < \lfloor y \rfloor) \ \#$ the negation Let $x_0 \in \mathbb{R}, y_0 \in \mathbb{R}$ be such that $(x_0 > y_0) \land (\lfloor x_0 \rfloor < \lfloor y_0 \rfloor)$ then $\lfloor x_0 \rfloor < \lfloor y_0 \rfloor \ \#$ conjunction elimination and $\lfloor x_0 \rfloor \in \mathbb{Z}, \lfloor y_0 \rfloor \in \mathbb{Z} \#$ by definition of floor then $\lfloor x_0 \rfloor + 1 \leq \lfloor y_0 \rfloor \#$ the smallest possible difference between two distinct integers is 1 then $\lfloor x_0 \rfloor + 1 \leq y_0 \#$ since $\lfloor y_0 \rfloor \leq y_0$ by definition of $\lfloor y_0 \rfloor$ then $\lfloor x_0 \rfloor + 1 < x_0 \#$ since $y_0 < x_0$ as how x_0 and y_0 are picked and $\lfloor x_0 \rfloor + 1 \in \mathbb{Z} \# \lfloor x_0 \rfloor \in \mathbb{Z}$ and $1 \in \mathbb{Z}$ then $\lfloor x_0 \rfloor + 1 \leq \lfloor x_0 \rfloor \#$ by definition of $\lfloor x_0 \rfloor$ that $\forall z \in \mathbb{Z}, z \leq x_0 \Rightarrow z \leq \lfloor x_0 \rfloor$ then $1 \leq 0 \#$ subtract $\lfloor x_0 \rfloor$ from both sides, and contradiction with that 1 > 0then $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \Rightarrow |x| \geq |y| \#$ negation of assumption because of contradiction

Claim 1.2:

$$\forall x \in \mathbb{R}, orall e \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, orall w \in \mathbb{R}, |x-w| < d \Rightarrow ||x| - \lfloor w
floor|| < e$$

Sample solution: This claim is false. Intuitively, this claim says for all x, when w is getting really really close to x then $\lfloor w \rfloor$ gets arbitrarily close to $\lfloor x \rfloor$. This is not quite true because, for example, 3.9999 is really close to 4 but $\lfloor 3.9999 \rfloor = 3$ is not that close at all to $\lfloor 4 \rfloor = 4$. So we will prove the negation of this claim which is

$$\exists x \in \mathbb{R}, \exists e \in \mathbb{R}^+, orall d \in \mathbb{R}^+, \exists w \in \mathbb{R}, (|x-w| < d) \land (|\lfloor x
floor - \lfloor w
floor|| \geq e)$$

Proof:

Pick x = 4, e = 0.5, then $x \in \mathbb{R}$ and $e \in \mathbb{R}^+$ Assume $d \in \mathbb{R}^+$ # a generic positive real number Pick w = 4 - 0.9dthen |x - w| = |4 - (4 - 0.9d)| = 0.9d < dand w < 4 # add 4 to both sides of -0.9d < 0then $\lfloor w \rfloor \leq 3 \# \lfloor w \rfloor \leq w < 4$ also $\lfloor x \rfloor = \lfloor 4 \rfloor = 4$ then $\lfloor x \rfloor - \lfloor w \rfloor \geq 4 - 3 = 1 \geq 0.5 = e \# - \lfloor w \rfloor \geq -3$ then $\lfloor x \rfloor - \lfloor w \rfloor \geq e \#$ transitivity of inequality then $\lfloor \lfloor x \rfloor - \lfloor w \rfloor \rfloor \geq e \#$ transitivity of inequality then $|\lfloor x \rfloor - \lfloor w \rfloor | \geq e \#$ absolute value of a positive number then $(|x - w| < d) \land (|\lfloor x \rfloor - \lfloor w \rfloor| \geq e) \#$ conjunction introduction then $\forall d \in \mathbb{R}^+, \exists w \in \mathbb{R}, (|x - w| < d) \land (|\lfloor x \rfloor - \lfloor w \rfloor| \geq e) \#$ introduce \forall then $\exists x \in \mathbb{R}, \exists e \in \mathbb{R}^+, \forall d \in \mathbb{R}^+, \exists w \in \mathbb{R}, (|x - w| < d) \land (|\lfloor x \rfloor - \lfloor w \rfloor| \geq e) \#$ introduce \exists

Claim 1.3:

$$\exists x \in \mathbb{R}, \forall e \in \mathbb{R}^+, \exists d \in \mathbb{R}^+, \forall w \in \mathbb{R}, |x-w| < d \Rightarrow |\lfloor x \rfloor - \lfloor w \rfloor| < e$$

Sample solution: This claim is true. It says that there exists a point x such that when w gets really close to x, $\lfloor w \rfloor$ gets arbitrarily close to $\lfloor x \rfloor$. From the previous proof, we learned that points like x = 4 are not good examples because the floor function is not continuous (or, is "jumping") at these points; however, any other points except these "jumping" points would be continuous and valid examples for this claim, such as x = 4.5.

Proof: Pick x = 4.5, then $x \in \mathbb{R}$ Assume $e \in \mathbb{R}^+ \#$ a generic positive real number Pick d = 0.49, then $d \in \mathbb{R}^+$ Assume $w \in \mathbb{R} \#$ a generic real number Assume |x - w| < d # assume the antecedent of the \Rightarrow then $-d < w - x < d \ \# \ |x| < a \Leftrightarrow -a < x < a$ then x - d < w < x + dthen $4.01 < w < 4.99 \ \# \ x = 4.5, d = 0.49$ then |w| = 4 # by definition of floor and |x| = |4.5| = 4 # x = 4.5 as picked and definition of floor then ||x| - |w|| = |4 - 4| = 0then $||x| - |w|| < e \# e \in \mathbb{R}^+$ then $|x - w| < d \Rightarrow ||x| - |w|| < e \#$ introduce antecedent then $\forall w \in \mathbb{R}, |x - w| < d \Rightarrow ||x| - |w|| < e \ \# \ ext{introduce} \ \forall$ then $\exists d \in \mathbb{R}^+, \forall w \in \mathbb{R}, |x - w| < d \Rightarrow ||x| - \lfloor w \rfloor| < e \ \# \ \text{introduce} \ \exists$ then $\forall e \in \mathbb{R}^+ \exists d \in \mathbb{R}^+, \forall w \in \mathbb{R}, |x - w| < d \Rightarrow ||x| - |w|| < e \ \# \ \text{introduce} \ \forall d \in \mathbb{R}^+$ then $\exists x \in \mathbb{R}, \forall e \in \mathbb{R}^+ \exists d \in \mathbb{R}^+, \forall w \in \mathbb{R}, |x - w| < d \Rightarrow ||x| - |w|| < e \ \# \text{ introduce } \exists$

Claim 1.4:

 $\exists x \in \mathbb{R}, |x+1| \neq |x|+1$

Sample solution: This claim is false. We will prove the negation of this statement which is.

 $\forall x \in \mathbb{R}, |x+1| = |x|+1$

We will prove the equality a = b by proving $(a \le b) \land (b \le a)$. The key is to make wise use of the definition of the floor, especially the " $z \le x \Rightarrow z \le \lfloor x \rfloor$ " part. **Proof:** Assume $x \in \mathbb{R}$ # a generic real number xthen $\lfloor x \rfloor \le x$ # by definition of $\lfloor x \rfloor$ then $\lfloor x \rfloor + 1 \le x + 1$ # add 1 to both sides then $\lfloor x \rfloor + 1 \le \lfloor x + 1 \rfloor$ # $\lfloor x \rfloor + 1 \in \mathbb{Z}$ and by definition of $\lfloor x + 1 \rfloor$ also $\lfloor x + 1 \rfloor \le x + 1$ # by definition of $\lfloor x + 1 \rfloor$ then $\lfloor x + 1 \rfloor - 1 \le x$ # subtract 1 from both sides then $\lfloor x + 1 \rfloor - 1 \le \lfloor x \rfloor$ # $\lfloor x + 1 \rfloor - 1 \in \mathbb{Z}$ and by definition of $\lfloor x \rfloor$ then $\lfloor x + 1 \rfloor - 1 \le \lfloor x \rfloor$ # $\lfloor x + 1 \rfloor - 1 \in \mathbb{Z}$ and by definition of $\lfloor x \rfloor$ then $\lfloor x + 1 \rfloor - 1 \le \lfloor x \rfloor$ # $\lfloor x + 1 \rfloor - 1 \in \mathbb{Z}$ and by definition of $\lfloor x \rfloor$ then $\lfloor x + 1 \rfloor \le \lfloor x \rfloor + 1$ # add 1 to both sides then $(\lfloor x \rfloor + 1 \le \lfloor x + 1 \rfloor) \land (\lfloor x + 1 \rfloor \le \lfloor x \rfloor + 1)$ # conjunction introduction then $\lfloor x + 1 \rfloor = \lfloor x \rfloor + 1$ # $(a \le b \land b \le a) \Leftrightarrow a = b$ then $\forall x \in \mathbb{R}, |x + 1| = |x| + 1$ # introduce \forall

2. Prove or disprove the claim, and prove or disprove the converse:

Claim 2.1:

$$\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 5k + 2) \Rightarrow (\exists j \in \mathbb{N}, n^2 = 5j + 4)$$

Sample solution: The original claim is true, the proof is similar to what we did in the lectures and tutorials. The converse of this claim is false, because n = 3, $n^2 = 9$ would be a counter-example.

Proof of the original:

Assume $n \in \mathbb{N}$ # a generic natural number Assume $\exists k \in \mathbb{N}, n = 5k + 2$ # the antecedent Let $k_0 \in \mathbb{N}$ be such that $n = 5k_0 + 2$ then $n^2 = (5k_0 + 2)^2 = 25k_0^2 + 20k_0 + 4 = 5(5k_0^2 + 4k_0) + 4$ Let $j = 5k_0^2 + 4k_0$, then $j \in \mathbb{N}$ # $k_0, 5, 4 \in \mathbb{N}$ then $n^2 = 5j + 4$ then $\exists j \in \mathbb{N}, n^2 = 5j + 4$ then $(\exists k \in \mathbb{N}, n = 5k + 2) \Rightarrow (\exists j \in \mathbb{N}, n^2 = 5j + 4)$ # introduce antecedent then $\forall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 5k + 2) \Rightarrow (\exists j \in \mathbb{N}, n^2 = 5j + 4)$ # introduce \forall

The negation of the converse of the claim is

$$\exists n \in \mathbb{N}, (\exists j \in \mathbb{N}, n^2 = 5j + 4) \land \neg (\exists k \in \mathbb{N}, n = 5k + 2)$$

Proof of the negation of converse:

Pick n = 3, then $n \in \mathbb{N}$ then $n^2 = 9 = 5 \times 1 + 4$ then $\exists j \in \mathbb{N}, n^2 = 5j + 4 \ \# \ 1 \in \mathbb{N}$ also $n = 3 = 5 \times 0 + 3$ then $\neg (\exists k \in \mathbb{N}, n = 5k + 2) \ \#$ uniqueness of remainder then $(\exists j \in \mathbb{N}, n^2 = 5j + 4) \land \neg (\exists k \in \mathbb{N}, n = 5k + 2) \ \#$ conjunction introduction then $\exists n \in \mathbb{N}, (\exists j \in \mathbb{N}, n^2 = 5j + 4) \land \neg (\exists k \in \mathbb{N}, n = 5k + 2) \ \#$ introduce \exists

Claim 2.2:

$$\forall m, n \in \mathbb{N}, (\exists k \in \mathbb{N}, m = 7k + 3) \land (\exists j \in \mathbb{N}, n = 7j + 4) \Rightarrow (\exists i \in \mathbb{N}, mn = 7i + 5)$$

Sample solution: The original claim is true. The converse of this claim is false, because we can easily find a counter-example such as m = 1, n = 5.

Proof of the original:

Assume $m, n \in \mathbb{N} \#$ two generic natural numbers Assume $(\exists k \in \mathbb{N}, m = 7k + 3) \land (\exists j \in \mathbb{N}, n = 7j + 4) \#$ the antecedent Let $k_0 \in \mathbb{N}$ be such that $m = 7k_0 + 3$, and $j_0 \in \mathbb{N}$ be such that $n = 7j_0 + 4$ then $mn = (7k_0 + 3)(7j_0 + 4) = 49k_0j_0 + 28k_0 + 21j_0 + 12$ $= 7(7k_0j_0 + 4k_0 + 3j_0 + 1) + 5$ Let $i = 7k_0j_0 + 4k_0 + 3j_0 + 1$ then mn = 7i + 5then $\exists i \in \mathbb{N}, mn = 7i + 5$ then $(\exists k \in \mathbb{N}, m = 7k + 3) \land (\exists j \in \mathbb{N}, n = 7j + 4) \Rightarrow (\exists i \in \mathbb{N}, mn = 7i + 5)$

then $\forall m, n \in \mathbb{N}, (\exists k \in \mathbb{N}, m = 7k + 3) \land (\exists j \in \mathbb{N}, n = 7j + 4) \Rightarrow (\exists i \in \mathbb{N}, mn = 7i + 5)$

The negation of the converse of the claim is

 $\exists m, n \in \mathbb{N}, (\exists i \in \mathbb{N}, mn = 7i + 5) \land [\neg (\exists k \in \mathbb{N}, m = 7k + 3) \lor \neg (\exists j \in \mathbb{N}, n = 7j + 4)]$

Proof of the negation of converse:

Pick m = 1, n = 5, then $m, n \in \mathbb{N}$ then $mn = 1 \times 5 = 5 = 7 \times 0 + 5$ then $\exists i \in \mathbb{N}, mn = 7i + 5 \ \# \ 0 \in \mathbb{N}$ also $m = 1 = 7 \times 0 + 1$ then $\neg (\exists k \in \mathbb{N}, m = 7k + 3) \ \#$ uniqueness of remainder then $\neg (\exists k \in \mathbb{N}, m = 7k + 3) \lor \neg (\exists j \in \mathbb{N}, n = 7j + 4) \ \#$ disjunction introduction then $(\exists i \in \mathbb{N}, mn = 7i + 5) \land [\neg (\exists k \in \mathbb{N}, m = 7k + 3) \lor \neg (\exists j \in \mathbb{N}, n = 7j + 4)]$ then $\exists m, n \in \mathbb{N}, (\exists i \in \mathbb{N}, mn = 7i + 5) \land [\neg (\exists k \in \mathbb{N}, m = 7k + 3) \lor \neg (\exists j \in \mathbb{N}, n = 7j + 4)]$ # introduce \exists