
CSC148H1 Term test #1 | Solutions February 2014

Question 1. [5 marks]

Read over the de�nition of this Python function:

def i(n):

"""Docstring (almost) omitted."""

return 1 + sum([i(j) for j in n]) if isinstance(n, list) else 0

Work out what each function call produces, and write it in the space provided.

1. i(5)

0

2. i([])

1

3. i([1, 2, 3])

1

4. i([1, [2, 3], 4, [5, 6]])

3

5. i([1, [2, 3, [3.5]], 4, [5, 6, [7, 8]]])

5

Question 2. [5 marks]

Read over the declarations of the three Exception classes, the de�nition of raiser, and the supplied code for

notice below. Then complete the code for notice, using only except blocks, and perhaps an else block.

class EX(Exception):

pass

class EXX(EX):

pass

class EXXX(EXX):

pass

def raiser(n: int) -> None:

"""Raise exceptions based on divisibility of n"""

if n % 12 == 0:

raise EXXX

elif n % 6 == 0:

raise EXX

elif n % 3 == 0:

Page 1 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

raise EX

else:

b = 1 / n

def notice(n: int) -> str:

"""Return message appropriate to raiser(n).

>>> notice(17)

’fine’

>>> notice("compute")

’whatever!’

>>> notice(12)

’oops! oops! oops!’

>>> notice(6)

’oops! oops!’

>>> notice(3)

’oops!’

"""

try:

raiser(n)

Write some "except" blocks and perhaps an "else" block

below that make notice(...)

have the behaviour shown in the docstring above

except EXXX:

return ’oops! oops! oops!’

except EXX:

return ’oops! oops!’

except EX:

return ’oops!’

except Exception:

return ’whatever!’

else:

return ’fine’

Question 3. [5 marks]

Read over the declaration of the class Tree and the docstring of the function initial a count. Then complete

the implementation of initial a count

class Tree:

"""Bare-bones Tree ADT"""

def __init__(self: ’Tree’,

value: object =None, children: list =None):

Page 2 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def initial_a_count(t: Tree) -> int:

"""Return number of values in t that begin with "a"

precondition - t is a non-empty tree with non-empty string values

>>> tn2 = Tree("one", [Tree("two"), Tree("three"),\

Tree("apple"), Tree("five")])

>>> tn3 = Tree("answer", [Tree("six"), Tree("seven")])

>>> tn1 = Tree("eight", [tn2, tn3])

>>> initial_a_count(tn1)

2

>>> initial_a_count(tn2)

1

"""

return (sum([initial_a_count(c) for c in t.children]) +

(1 if t.value[0] == ’a’ else 0))

Question 4. [5 marks]

Complete the implementation of push in the class AlphaStack, a subclass of Stack. Notice that you may use

push, pop, and is empty, the public operations of Stack, but you may not assume anything about Stack's

underlying implementation. You may �nd it useful to know that if s1 and s2 are strings, then s1 < s2 is

True if and only if s1 is smaller than s2 in alphabetical order.

from csc148stack import Stack

"""

Stack operations:

pop(): remove and return top item

push(item): store item on top of stack

is_empty(): return whether stack is empty.

"""

class AlphaStack(Stack):

"""Stack of strings in descending alphabetical order"""

Page 3 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

def push(self: ’AlphaStack’, s: str) -> None:

"""Place s on top of stack self provided it is smaller

in alphabetic order than the string currently on top of

stack self (if there is one). Otherwise raise an Exception

and leave stack self as it was.

precondition - possibly empty self contains only strings

>>> s = AlphaStack()

>>> s.push("behemoth")

>>> s.push("asterisk")

>>> # now s.push("caliph") should raise Exception

"""

if not self.is_empty():

last = self.pop()

Stack.push(self, last)

if last <= s:

raise Exception(

’{} is not alphabetically lower than {}’.format(s, last))

Stack.push(self, s)

Page 4 of 4 End of Solutions

