
CSC148H1 Term test #1 | Solutions February 2014

Question 1. [5 marks]

Read over the de�nition of this Python function:

def c(n):

"""Docstring (almost) omitted."""

return max([len(n)] + [c(i) for i in n]) if isinstance(n, list) else 0

Work out what each function call produces, and write it in the space provided.

1. c(5)

0

2. c([])

0

3. c([1, 3, 5])

3

4. c([0, [1, 3, 5], 7])

3

5. c([0, [1, 3, 5, [7, [9]]], 11])

4

Question 2. [5 marks]

Read over the declarations of the three Exception classes, the de�nition of raiser, and the supplied code for

notice below. Then complete the code for notice, using only except blocks, and perhaps an else block.

class E1(Exception):

pass

class E2(E1):

pass

class E3(E2):

pass

def raiser(n: int) -> None:

"""Raise exceptions based magnitude of n"""

if n < 2:

raise E3

elif n < 4:

raise E2

elif n < 6:

Page 1 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

raise E1

else:

b = 1 / n

def notice(n: int) -> str:

"""Return messages appropriate to raiser(n).

>>> notice(15)

’ok’

>>> notice("CSC148")

’purple alert!’

>>> notice (1)

’red alert!’

>>> notice(3)

’orange alert!’

>>> notice(5)

’yellow alert!’

"""

try:

raiser(n)

Write some "except" blocks and perhaps an "else" block

below that make notice(...)

have the behaviour shown the the docstring above

except E3:

return ’red alert!’

except E2:

return ’orange alert!’

except E1:

return ’yellow alert!’

except Exception:

return ’purple alert!’

else:

return ’ok’

Question 3. [5 marks]

Read over the declaration of the class Tree and the docstring of the function initial a count. Then complete

the implementation of initial a count. You may �nd the builtin Python function sum(L) useful, which returns

the sum of the numbers in list L, or 0 if L is empty.

class Tree:

"""Bare-bones Tree ADT"""

def __init__(self: ’Tree’,

Page 2 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def initial_a_count(t: Tree) -> int:

"""Return number of values in t that begin with "a"

precondition - t is a non-empty tree with non-empty string values

>>> tn2 = Tree("one", [Tree("two"), Tree("three"),\

Tree("apple"), Tree("five")])

>>> tn3 = Tree("answer", [Tree("six"), Tree("seven")])

>>> tn1 = Tree("eight", [tn2, tn3])

>>> initial_a_count(tn1)

2

>>> initial_a_count(tn2)

1

"""

return (sum([initial_a_count(c) for c in t.children]) +

(1 if t.value[0] == ’a’ else 0))

Question 4. [5 marks]

Complete the implementation of push in the class PrefixStack, a subclass of Stack. Notice that you may

use push, pop, and is empty, the public operations of Stack, but you may not assume anything about

Stack's underlying implementation. You may �nd it useful to know that if s1 and s2 are strings, then

s1.startswith(s2) returns True if s2 is a pre�x of s1, and False otherwise.

from csc148stack import Stack

"""

Stack operations:

pop(): remove and return top item

push(item): store item on top of stack

is_empty(): return whether stack is empty.

"""

class PrefixStack(Stack):

Page 3 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

"""Stack of strings where each is a prefix of its predecessor"""

def push(self: ’PrefixStack’, s: str) -> None:

"""Place s on top of stack self, provided s is a prefix of

its predecessor. Otherwise raise an Exception and leave

stack self as it was

precondition - possibly empty self contains only strings

>>> s = PrefixStack()

>>> s.push("asterisk")

>>> s.push("aster")

>>> # now s.push("asteri") should raise Exception

"""

if not self.is_empty():

last = self.pop()

Stack.push(self, last)

if not last.startswith(s):

raise Exception(’{} not a prefix of {}’.format(s, last))

Stack.push(self, s)

Page 4 of 4 End of Solutions

