
CSC148H1 Term test #1 | Solutions February 2014

Question 1. [5 marks]

Read over the de�nition of this Python function:

def c(n):

"""Docstring (almost) omitted."""

return 1 + max([c(i) for i in n] + [0]) if isinstance(n, list) else 0

Work out what each function call produces, and write it in the space provided.

1. c(5)

0

2. c([])

1

3. c([1, 3, 5])

1

4. c([0, [1, 3, 5], 7])

2

5. c([0, [1, 3, 5, [7, [9]]], 11])

4

Question 2. [5 marks]

Read over the declarations of the three Exception classes, the de�nition of raiser, and the supplied code for

notice below. Then complete the code for notice, using only except blocks, and perhaps an else block.

class E1(Exception):

pass

class E2(E1):

pass

class E3(E2):

pass

def raiser(n: int) -> None:

"""Raise exceptions based magnitude of n"""

if n < 2:

raise E3

elif n < 4:

raise E2

Page 1 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

elif n < 6:

raise E1

else:

b = 1 / n

def notice(n: int) -> str:

"""Return messages appropriate to raiser(n).

>>> notice(15)

’ok’

>>> notice("CSC148")

’purple alert!’

>>> notice (1)

’red alert!’

>>> notice(3)

’orange alert!’

>>> notice(5)

’yellow alert!’

"""

try:

raiser(n)

Write some "except" blocks and perhaps an "else" block

below that make notice(...)

have the behaviour shown the the docstring above

except E3:

return ’red alert!’

except E2:

return ’orange alert!’

except E1:

return ’yellow alert!’

except Exception:

return ’purple alert!’

else:

return ’ok’

Question 3. [5 marks]

Read over the declaration of the class Tree and the docstring of the function two all. Then complete the

implementation of two all. You may �nd the builtin Python function all(L) useful, which returns True if

all elements of list L are True.

class Tree:

"""Bare-bones Tree ADT"""

Page 2 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

def __init__(self: ’Tree’,

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def two_all(t: Tree) -> bool:

"""Return whether every value in tree t is 2

precondition - t is a non-empty tree with number values

>>> tn2 = Tree(2, [Tree(4), Tree(4.5), Tree(2), Tree(5.75)])

>>> tn3 = Tree(2, [Tree(2), Tree(2)])

>>> tn1 = Tree(1, [tn2, tn3])

>>> two_all(tn1)

False

>>> two_all(tn3)

True

"""

return t.value == 2 and all([two_all(c) for c in t.children])

Question 4. [5 marks]

Complete the implementation of push in the class ParityStack, a subclass of Stack. Notice that you may use

push, pop, and is empty, the public operations of Stack, but you may not assume anything about Stack's

underlying implementation. You may �nd it useful to know that if n1 is an integer, then n1 % 2 == 0 if

and only if n1 is even.

from csc148stack import Stack

"""

Stack operations:

pop(): remove and return top item

push(item): store item on top of stack

is_empty(): return whether stack is empty.

"""

class ParityStack(Stack):

"""Stack of integers where consecutive elements sum to even"""

Page 3 of 4 cont'd: : :

CSC148H1 Term test #1 | Solutions February 2014

def push(self: ’ParityStack’, n: int) -> None:

"""Add n to top of stack self provided n’s sum with its

predecessor is even. Otherwise raise an Exception and

leave stack self as it was before.

precondition - possibly empty self contains only integers

>>> s = ParityStack()

>>> s. push(11)

>>> s.push(3)

>>> # now s.push(4) should raise Exception

"""

if not self.is_empty():

last = self.pop()

Stack.push(self, last)

if not (last + n) % 2 == 0:

raise Exception(’{} + {} is not even’.format(n, last))

Stack.push(self, n)

Page 4 of 4 End of Solutions

