
CSC148 winter 2014

BSTs, big-Oh

week 9

Danny Heap / Dustin Wehr

heap@cs.toronto.edu / dustin.wehr@utoronto.ca

BA4270 / SF4306D

http://www.cdf.toronto.edu/~heap/148/F13/

March 13, 2014

1/22

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

binary search tree | deletion

performance

big-oh

2/22

Term test remarking note

If you parsed

return 1 + sum_or_max(...) if some_test else 0_or_1

as

return 1 + (sum_or_max(...) if some_test else 0_or_1)

instead of

(1 + sum_or_max(...)) if some_test else 0_or_1

but otherwise traced the function correctly,

you can probably get some points back.

3/22

A common mistake on A1

Code here (before the main block) should NEVER

reference variables such as x defined in the main block.

def f():

print(x) # BAD. Exception unless f is called

from the main block. If that is

the only way your code is meant

to be executed, you don’t need

the main block.

if __name__ == ’__main__’:

x = 5

f(x)

4/22

last week...

Remember this and how it's an inorder.. wait I mean a postorder..

wait nevermind forget about it.

def _str(b: BTNode, i: str) -> str:

"""Return a string representing self inorder,

indent by i"""

return ((_str(b.right, i + ’ ’) if b.right else ’’) +

i + str(b.data) + ’\n’ +

(_str(b.left, i + ’ ’) if b.left else ’’))

It is a reversed inorder traversal.

5/22

traversal task...
by hand

on its own, neither a preorder nor inorder traversal exactly

specify a tree, but together...

[10, 6, 8, 12, 11, 15] (pre-order)

[8, 6, 12, 10, 11, 15] (inorder)

6/22

recall: wrapper/node binary tree

instead of single tree class, separate node and bst classes:

class BTNode:

"""Binary Tree node."""

def __init__(self: ’BTNode’, data: object,

left: ’BTNode’=None,

right: ’BTNode’=None) -> None:

"""Create BT node with data, children left and right."""

self.data, self.left, self.right = data, left, right

7/22

recall: binary search tree

Add a condition: data in left subtree is less than that in the root,

which in turn is less than that in right subtree. Now search is more

e�cient...

class BST:

"""Binary search tree."""

def __init__(self: ’BST’, root: BTNode=None) -> None:

"""Create BST with BTNode root."""

self._root = root

8/22

deletion of data from BST

4

�
�
B
B

3

8

�
�
B
B

9

%
%
e
e

5

!

4

8

�
�
B
B

9

%
%
B
B

5

4

�� BB

3

8

�� BB

9

%% ee

5

!

4

�� BB

3

8

�� BB

9

%% ee

5

!

3

8

�� BB

9

%% BB

4

9/22

deletion of data from BST rooted at node?

I what return value?

Consider case of deleting root: must return a di�erent node.

I what to do if node is None?

Return None. More generally, if data is not in tree, tree is

unmodi�ed and return the current root.

I what if data to delete is less than that at node?

Try deleting data in left subtree. Then return this node.

I what if it's more?

I what if the data equals this node's data and...

I this node has no left child

I ... no right child?

I both children?

10/22

recall list searching

You've already seen algorithms for seeing whether an element is

contained in a list:

[97, 36, 48, 73, 156, 947, 56, 236]

def search(x):

for y in L:

if x == y:

return True

return False

What is the performance of these algorithms in terms of list

size? What about the analogous algorithm for a tree?

11/22

binary search of a sorted list

[36, 48, 56, 73, 97, 156, 236, 947]

def search(L,x):

if len(L) <= 1:

return len(L) == 1 and x == L[0]

mid = len(L)//2

if x == L[mid]:

return True

elif x < L[mid]:

return search(L[0:mid], x)

else:

return search(L[mid+1:len(L)], x)

What is the performance of these algorithms in terms of list

size? What about the analogous algorithm for a tree?

12/22

BST e�ciency?

Binary search of a list allowed us to ignore (roughly) half the

list, and (roughly) half of the non-ignored sublist, and so on.

Searching a binary search tree allows us to ignore the left or right

subtree | nearly half in a well-balanced tree, and then one of

the subtrees of the non-ignored subtree, and so on.

If we're searching the tree rooted at node n for value v , then

one of three situations are possible:

I node n has value v

I v is less than node n 's value, so we should search to the left

I v is more than node n 's value, so we should search to the

right

13/22

performance. . .

We want to measure algorithm performance, independent of

hardware, programming language, random events

Focus on the size of the input, call it n . How does this a�ect

the resources (e.g. processor time) required for the output?

If the relationship is linear, our algorithm's complexity is O(n)

| roughy proportional to the input size n .

14/22

less-than-stellar sorting...

def sort(L:list): # Let’s look at two sorting

some initializing # algs of this form

for i in range(len(L)):

do something

Selection sort:

What we've accomplished by the start of i -th iteration: We've put

the smallest i elements of the list in their �nal places (in the �rst i

positions of the list).

What we do next: select the smallest element from the remaining

n � i right-most positions, and swap it into position i .

Insertion sort:

What we've accomplished by the start of i -th iteration: The �rst i

positions of the list are sorted, though the elements may not be in

their �nal positions. The right-most n � i elements are untouched.

What we do next: Take the next element (at position i) and insert it

into its proper place in the left-most i + 1 positions.

15/22

less-than-stellar sorting...

Express some crude \number of steps" for these algorithms |

ignore di�erences between steps that do not depend on the list

size n

selection sort: for each list position from 0 to n-2, linear-search

the remaining elements to �nd the minimum, and

if it is smaller than the element at the current

position, swap them.

insertion sort: for each list position from 1 to the end of the

list, compare it to each previous element until you

�nd one that is not larger than it, and insert

element there.

16/22

running time analysis

algorithm's behaviour over large input (size n) is common way

to compare performance | how does performance vary as n

increases?

constant: c 2 R+ (some positive number)

logarithmic: c logn

linear: cn (probably not the same c)

quadratic: cn2

cubic: cn3

exponential: c2n

horrible: cnn or cn !

17/22

running time analysis

abstract away di�erence between similar worst-case

performance, e.g.

I one algorithm runs in (0:3365n2 + 0:17n + 0:32)�s

I another algorithm runs in (0:47n2 + 0:08n)�s

I in both cases doubling n quadruples the run time. We say

both algorithms are O(n2) or \order n2" or

\oh-n-squared" behaviour.

18/22

asymptotics

If any reasonable implementation of an algorithm, on any

reasonable computer, runs in number of steps no more than

cg(n) (some constant c), we say the algorithm is O(g(n)).

Graphing various examples shows how we ignore the constant c

as n gets large.

Compare

I g(n) = :0001� 2n

I g(n) = :1� n3

I g(n) = 2n2

I g(n) = 43n

I g(n) = 1297

19/22

15 20 25 30 35

1000

2000

3000

4000

For :0001� 2n ; :1� n3
; 2n2

; 43n ; and 1297, big-O takes over

fully around n = 30.

20/22

case: lgn

this is the number of times you can divide n in half before

reaching 1.

I refresher: ab = c means loga c = b.

I this runtime behaviour often occurs when we \divide and

conquer" a problem (e.g. binary search)

I we usually assume lgn (log base 2), but the di�erence is

only a constant:

2log2 n = n = 10log10 n

) log2 n = log2(10
log10 n) = log2 10� log10 n

[recall logx y
z = (logx y)� z]

I so we just say O(lgn).

I O(lgn) is the run time of binary search of a sorted list, etc

21/22

hierarchy

Since big-oh is an upper-bound the various classes �t into a

hierarchy:

O(1) � O(lgn) � O(n) � O(n2) � O(n3) � O(2n) � O(nn)

22/22

	binary search tree — deletion
	performance
	big-oh

