
CSC148 winter 2014

stools, names, tracing

week 5

Danny Heap / Dustin Wehr

heap@cs.toronto.edu / dustin.wehr@utoronto.ca

BA4270 / SF4306D

http://www.cdf.toronto.edu/~heap/148/F13/

February 5, 2014

1/18

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

tracing... or not

prose to (recursive) code

memory model

name resolution (name lookup)

unit testing example

2/18

don't trace too far!

def rec_max(L):

"""

Return the maximum number in possibly nested list of numbers.

>>> rec_max([17, 21, 0])

21

>>> rec_max([17, [21, 24], 0])

24

>>> rec_max([17, [21, 24], [18, 37, 16], 0])

37

"""

return max([rec_max(x) if isinstance(x, list) else x for x in L])

Recommended:

I trace the simplest (non-recursive) case

I trace the next-most complex case, plug in known results

I same as previous step...

3/18

TMI tracing

In contrast to the step-by-step, plus abstraction (previous

slide), you could trace this in the visualizer

4/18

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor.php#code=%23+Write+your+Python+code+here%0Adef+rec_max(L)%3A++%0A++++%22%22%22++%0A++++Return+the+maximum+number+in+possibly+nested+list+of+numbers.++%0A+++%0A++++%3E%3E%3E+rec_max(%5B17,+21,+0%5D)+++%0A++++21+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+0%5D)+++%0A++++24+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)+++%0A++++37+++%0A++++%22%22%22++%0A++++return+max(%5Brec_max(x)+if+isinstance(x,+list)+else+x+for+x+in+L%5D)+%0A%0Ar+%3D+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)%0A&mode=display&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=&curInstr=23

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,

stool 1 to stool 3, we'd �rst think of a name and parameters.

We can start with movecheeses(n, source, dest), meaning show

the moves from source stool to destination stool for n cheeses.

5/18

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,

stool 1 to stool 3, we'd �rst think of a name and parameters.

We can start with movecheeses(n, source, dest), meaning show

the moves from source stool to destination stool for n cheeses.

6/18

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,

stool 1 to stool 3, we'd �rst think of a name and parameters.

We can start with movecheeses(n, source, dest), meaning show

the moves from source stool to destination stool for n cheeses.

7/18

stating that recursive insight:

The doodling on the previous slide breaks into a pattern.

I move all but the bottom cheese from source to

intermediate stool (sounds recursive...)

I move the bottom cheese from the source to the destination

stool (sounds like the 1-cheese move)

I move all but the bottom cheese from the intermediate to

the destination stool (sounds recursive...)

The original problem repeats, except with di�erent source,

destination, and intermediate stools!

New name: movecheeses(n, source, intermediate, destination)

8/18

write some code!

Fill in the three steps from the previous slide, using recursive
calls to movecheeses(...) with di�erent values for the number of
cheeses, the source, destination, and intermediate stools, where
appropriate.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:

"""Print moves to get n cheeses from source

to destination, possibly using intermediate"""

if n > 1: # fill this in!

move_cheeses(?, ?, ?, ?)

move_cheeses(?, ?, ?, ?)

move_cheeses(?, ?, ?, ?)

else: # just 1 cheese --- leave this out for now!

9/18

complete that code!

Now, �ll in what you do to move just one cheese | don't use
any recursion! You will be returning a string that speci�es you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:

"""Print moves to get n cheeses from source

to destination, possibly using intermediate"""

if n > 1:

move_cheeses(n - 1, source, destination, intermediate)

move_cheeses(1, source, intermediate, destination)

move_cheeses(n - 1, intermediate, source, destination)

else: # just 1 cheese --- fill this in now!

print(????)

10/18

complete that code!

Now, �ll in what you do to move just one cheese | don't use
any recursion! You will be returning a string that speci�es you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:

"""Print moves to get n cheeses from source

to destination, possibly using intermediate"""

if n > 1:

move_cheeses(n - 1, source, destination, intermediate)

move_cheeses(1, source, intermediate, destination)

move_cheeses(n - 1, intermediate, source, destination)

else:

print(source, "-->", destination)

11/18

python grati�cation

Once you have your code entered into some Python

environment, you should run it with a few small values of n. As

usual, you can get more intuition about it by tracing examples,

working from small to larger n

12/18

how much detail for developers?

Enough detail to predict results and e�ciency of our code |

more detail than end users, less than compiler/interpreter

designers. In Python:

I Every name x contains a value id(x)

I Every value is a reference to the address of an object

I Actually, the python docs consider the \address" part an

implementation detail, not relevant for developers. Docs

for id():

Return the \identity" of an object. This is an integer

which is guaranteed to be unique and constant for this

object during its lifetime. Two objects with

non-overlapping lifetimes may have the same id()

value.

13/18

how much detail for developers?

Enough detail to predict results and e�ciency of our code |

more detail than end users, less than compiler/interpreter

designers. In Python:

I Every name x contains a value id(x)

I Every value is a reference to the address of an object

I Actually, the python docs consider the \address" part an

implementation detail, not relevant for developers. Docs

for id():

Return the \identity" of an object. This is an integer

which is guaranteed to be unique and constant for this

object during its lifetime. Two objects with

non-overlapping lifetimes may have the same id()

value.

13/18

searching for names

python looks, in order:

I innermost scope (function body usually) local

(can also be a list/dictionary comprehension, or a lambda

expression)

I scopes of enclosing functions nonlocal

I global (current module or __main__).

I built-in names

I see scopes and namespaces

14/18

http://docs.python.org/3.3/tutorial/classes.html#python-scopes-and-namespaces

intense example

Try running python docs namespace example to check your

comfort level

This might seem like a very python-speci�c thing, but in fact

every programming language has some standard for name

lookup, and they are all fairly similar.

15/18

http://docs.python.org/3.3/tutorial/classes.html#scopes-and-namespaces-example

methods

The �rst parameter, conventionally called self, is a reference to

the instance:

>>> class Foo:

... def f(self):

... return "Hi world!"

...

>>> x = Foo()

Now Foo.f(x) means x.f()

16/18

hunting for a method...

Start in the object's nearest subclass and work upwards

(through the inheritance hierarchy), for example visualize

method

17/18

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor-dev.php#code=%23+Write+your+Python+code+here%0Aclass+A%3A%0A++++def+f(self,+n)%3A%0A++++++++return+2+*+n%0A++++%0A++++def+g(self,+n)%3A%0A++++++++return+3+*+self.f(n)%0A++++%0Aclass+B(A)%3A%0A++++def+f(self,+n)%3A%0A++++++++return+5+*+n%0A++++%0Ab+%3D+B()%0Ax+%3D+b.f(1)%0Ay+%3D+b.g(1)%0Az+%3D+A.f(b,4)&mode=edit&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=
https://mcs.utm.utoronto.ca/~pcrs/opt/tutor-dev.php#code=%23+Write+your+Python+code+here%0Aclass+A%3A%0A++++def+f(self,+n)%3A%0A++++++++return+2+*+n%0A++++%0A++++def+g(self,+n)%3A%0A++++++++return+3+*+self.f(n)%0A++++%0Aclass+B(A)%3A%0A++++def+f(self,+n)%3A%0A++++++++return+5+*+n%0A++++%0Ab+%3D+B()%0Ax+%3D+b.f(1)%0Ay+%3D+b.g(1)%0Az+%3D+A.f(b,4)&mode=edit&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=

write unit tests with good coverage for this function

def max_nested(L:list) -> ’int or None’:

""" REQ : L is a (possibly-nested) list of integers

Returns the largest integer in L, or None if L has no

integers in it.

"""

if len(L) == 0:

return None

maxes_of_parts = []

for x in L:

if isinstance(x,int):

maxes_of_parts.append(x)

else:

y = max_nested(x)

if y is not None:

maxes_of_parts.append(y)

return max(maxes_of_parts)

review: choosing test cases

Did your unit tests find an error in the code?

18/18

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/ChoosingTestCases.html

write unit tests with good coverage for this function

def max_nested(L:list) -> ’int or None’:

""" REQ : L is a (possibly-nested) list of integers

Returns the largest integer in L, or None if L has no

integers in it.

"""

if len(L) == 0:

return None

maxes_of_parts = []

for x in L:

if isinstance(x,int):

maxes_of_parts.append(x)

else:

y = max_nested(x)

if y is not None:

maxes_of_parts.append(y)

return max(maxes_of_parts)

review: choosing test cases

Did your unit tests find an error in the code?

18/18

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/ChoosingTestCases.html

	tracing... or not
	prose to (recursive) code
	memory model
	name resolution (name lookup)
	unit testing example

