CSC148 winter 2014

stools, names, tracing
week 5

Danny Heap / Dustin Wehr
heap@cs.toronto.edu / dustin.wehr@utoronto.ca
BA4270 / SF4306D
http://www.cdf.toronto.edu/ heap/148/F13/

February 5, 2014

1/18

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

tracing... or not

prose to (recursive) code

memory model

name resolution (name lookup)

unit testing example

2/18

don’t trace too far!

def rec_max(L):
nnn

Return the maximum number in possibly nested list of numbers.

>>> rec_max([17, 21, 0])

21

>>> rec_max([17, [21, 24], 0])

24

>>> rec_max([17, [21, 24], [18, 37, 16], 0])
37

return max([rec_max(x) if isinstance(x, list) else x for x in L])

Recommended:
> trace the simplest (non-recursive) case
» trace the next-most complex case, plug in known results

» same as previous step...

3/18

TMI tracing

In contrast to the step-by-step, plus abstraction (previous
slide), you could trace this in the visualizer

4/18

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor.php#code=%23+Write+your+Python+code+here%0Adef+rec_max(L)%3A++%0A++++%22%22%22++%0A++++Return+the+maximum+number+in+possibly+nested+list+of+numbers.++%0A+++%0A++++%3E%3E%3E+rec_max(%5B17,+21,+0%5D)+++%0A++++21+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+0%5D)+++%0A++++24+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)+++%0A++++37+++%0A++++%22%22%22++%0A++++return+max(%5Brec_max(x)+if+isinstance(x,+list)+else+x+for+x+in+L%5D)+%0A%0Ar+%3D+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)%0A&mode=display&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=&curInstr=23

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,
stool 1 to stool 3, we’d first think of a name and parameters.
We can start with movecheeses(n, source, dest), meaning show
the moves from source stool to destination stool for n cheeses.

5/18

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,
stool 1 to stool 3, we’d first think of a name and parameters.
We can start with movecheeses(n, source, dest), meaning show
the moves from source stool to destination stool for n cheeses.

6/18

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,
stool 1 to stool 3, we’d first think of a name and parameters.
We can start with movecheeses(n, source, dest), meaning show
the moves from source stool to destination stool for n cheeses.

7/18

stating that recursive insight:

The doodling on the previous slide breaks into a pattern.
» move all but the bottom cheese from source to
intermediate stool (sounds recursive...)

» move the bottom cheese from the source to the destination
stool (sounds like the 1-cheese move)

» move all but the bottom cheese from the intermediate to
the destination stool (sounds recursive...)

The original problem repeats, except with different source,

destination, and intermediate stools!

New name: movecheeses(n, source, intermediate, destination)

8/18

write some code!

Fill in the three steps from the previous slide, using recursive
calls to movecheeses(...) with different values for the number of
cheeses, the source, destination, and intermediate stools, where

appropriate.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:
"""Print moves to get n cheeses from source
to destination, possibly using intermediate"""
if n > 1: # £ill this in!

move_cheeses(7, ?, ?, ?)

move_cheeses(7, 7, ?, ?)

move_cheeses(7, ?, ?, ?)
else: # just 1 cheese --- leave this out for now!

0/18

complete that code!

Now, fill in what you do to move just one cheese — don’t use
any recursion! You will be returning a string that specifies you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,
destination: int) -> None:

"""Print moves to get n cheeses from source
to destination, possibly using intermediate"""

if n > 1:
move_cheeses(n - 1, source, destination, intermediate)
move_cheeses (1, source, intermediate, destination)
move_cheeses(n - 1, intermediate, source, destination)

else: # just 1 cheese --- fill this in now!
print(7777)

10/18

complete that code!

Now, fill in what you do to move just one cheese — don’t use
any recursion! You will be returning a string that specifies you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,
destination: int) -> None:

"""Print moves to get n cheeses from source
to destination, possibly using intermediate"""

if n > 1:
move_cheeses(n - 1, source, destination, intermediate)
move_cheeses (1, source, intermediate, destination)
move_cheeses(n - 1, intermediate, source, destination)

else:
print(source, "-->", destination)

11/18

python gratification

Once you have your code entered into some Python
environment, you should run it with a few small values of n. As
usual, you can get more intuition about it by tracing examples,
working from small to larger n

12/18

how much detail for developers?

Enough detail to predict results and efficiency of our code —
more detail than end users, less than compiler/interpreter
designers. In Python:

» Every name x contains a value id (x)

» Every value is a reference to the address of an object

13/18

how much detail for developers?

Enough detail to predict results and efficiency of our code —
more detail than end users, less than compiler/interpreter
designers. In Python:

» Every name x contains a value id (x)
» Every value is a reference to the address of an object

» Actually, the python docs consider the “address” part an
implementation detail, not relevant for developers. Docs
for idO:

Return the “identity” of an object. This is an integer
which 1s guaranteed to be unique and constant for this
object during its lifetvme. Two objects with
non-overlapping lifetimes may have the same id()
value.

13/18

searching for names

python looks, in order:

>

vV v v Vv

innermost scope (function body usually) local
(can also be a list /dictionary comprehension, or a lambda
expression)

scopes of enclosing functions nonlocal
global (current module or __main__).
built-in names

S€€ SCopes and namespaces

14/18

http://docs.python.org/3.3/tutorial/classes.html#python-scopes-and-namespaces

intense example

Try running python docs namespace example to check your
comfort level

This might seem like a very python-specific thing, but in fact
every programming language has some standard for name
lookup, and they are all fairly similar.

15/18

http://docs.python.org/3.3/tutorial/classes.html#scopes-and-namespaces-example

methods

The first parameter, conventionally called self, is a reference to
the instance:

>>> class Foo:
def f(self):
return "Hi world!"

>>> x = Foo()

Now Foo.f(x) means x.f()

16/18

hunting for a method...

Start in the object’s nearest subclass and work upwards
(through the inheritance hierarchy), for example visualize
method

17/18

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor-dev.php#code=%23+Write+your+Python+code+here%0Aclass+A%3A%0A++++def+f(self,+n)%3A%0A++++++++return+2+*+n%0A++++%0A++++def+g(self,+n)%3A%0A++++++++return+3+*+self.f(n)%0A++++%0Aclass+B(A)%3A%0A++++def+f(self,+n)%3A%0A++++++++return+5+*+n%0A++++%0Ab+%3D+B()%0Ax+%3D+b.f(1)%0Ay+%3D+b.g(1)%0Az+%3D+A.f(b,4)&mode=edit&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=
https://mcs.utm.utoronto.ca/~pcrs/opt/tutor-dev.php#code=%23+Write+your+Python+code+here%0Aclass+A%3A%0A++++def+f(self,+n)%3A%0A++++++++return+2+*+n%0A++++%0A++++def+g(self,+n)%3A%0A++++++++return+3+*+self.f(n)%0A++++%0Aclass+B(A)%3A%0A++++def+f(self,+n)%3A%0A++++++++return+5+*+n%0A++++%0Ab+%3D+B()%0Ax+%3D+b.f(1)%0Ay+%3D+b.g(1)%0Az+%3D+A.f(b,4)&mode=edit&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=

write unit tests with good coverage for this function

def max_nested(L:1list) -> ’int or None’:
""" REQ : L is a (possibly-nested) list of integers
Returns the largest integer in L, or None if L has no
integers in it.
nnn
if len(L) ==
return None
maxes_of_parts = []
for x in L:
if isinstance(x,int):
maxes_of_parts.append(x)
else:
y = max_nested(x)
if y is not Nome:
maxes_of_parts.append(y)
return max(maxes_of_parts)

review: choosing test cases

18/18

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/ChoosingTestCases.html

write unit tests with good coverage for this function

def max_nested(L:1list) -> ’int or None’:
""" REQ : L is a (possibly-nested) list of integers
Returns the largest integer in L, or None if L has no
integers in it.
nnn
if len(L) ==
return None
maxes_of_parts = []
for x in L:
if isinstance(x,int):
maxes_of_parts.append(x)
else:
y = max_nested(x)
if y is not Nome:
maxes_of_parts.append(y)
return max(maxes_of_parts)

Did your unit tests find an error in the code?

18/18

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/ChoosingTestCases.html

	tracing... or not
	prose to (recursive) code
	memory model
	name resolution (name lookup)
	unit testing example

