CSC148 winter 2014

inheritance, Exceptions, special methods
week 3

Danny Heap (with additions by Dustin Wehr)
heap@cs.toronto.edu (dustin.wehr@utoronto.ca)
BA4270, behind elevators (SF4306D)
http://www.cdf.toronto.edu/ "heap/148/W14/

January 23, 2014

1/16

http://www.cdf.toronto.edu/~heap/148/W14/

Topics today

» Specializing software
» inheritance
» extending vs. overriding
» calling superclass constructors (special case of __init__)

» Exceptions

» what they are

why we use them

raising

catching (“except” clause)
defining your own

vV vVv.v .y

2/16

from previous weeks

Confused/worried about properties?
https://piazza.com/class/hqaccaidcrq44o?cid=88

Very uncomfortable with recursion?
https://piazza.com/class/hqaccaidcrq44o?cid=94

3/16

Why have a Queue class. ..

...when list objects can do everything Queue objects can do,
plus more?

4/16

Why have a Queue class. ..

...when list objects can do everything Queue objects can do,
plus more?

» Hard-to-ignore communication of the programmer’s
intentions
documentation, basically

4/16

Why have a Queue class. ..

...when list objects can do everything Queue objects can do,
plus more?

» Hard-to-ignore communication of the programmer’s
intentions
documentation, basically

» More-efficient implementation

4/16

specialize flexibly

If we decided to extend the features of Stack, what’s wrong
with:

» modifying the existing Stack?

» copy-paste-modify Stack — MyStack?

» include Stack attribute in new classes

5/16

specialize flexibly
If we decided to extend the features of Stack, what’s wrong
with:
» modifying the existing Stack?
—Qk if there was something you should have put there in
the first place. But what if we want to extend the features
of Stack in two different, incompatible ways?

» copy-paste-modify Stack — MyStack?

» include Stack attribute in new classes

5/16

specialize flexibly

If we decided to extend the features of Stack, what’s wrong
with:
» modifying the existing Stack?

—Qk if there was something you should have put there in
the first place. But what if we want to extend the features
of Stack in two different, incompatible ways?
—Code/feature bloat: introduces unnecessary
complication/clutter for users for whom the original Stack
class was adequate.

» copy-paste-modify Stack — MyStack?

» include Stack attribute in new classes

5/16

specialize flexibly

If we decided to extend the features of Stack, what’s wrong
with:

» modifying the existing Stack?
—Qk if there was something you should have put there in
the first place. But what if we want to extend the features
of Stack in two different, incompatible ways?
—Code/feature bloat: introduces unnecessary
complication/clutter for users for whom the original Stack
class was adequate.

» copy-paste-modify Stack — MyStack?
Improvements/fixes of Stack will need to be repeated in
MyStack.

» include Stack attribute in new classes

5/16

specialize flexibly

If we decided to extend the features of Stack, what’s wrong
with:

» modifying the existing Stack?
—Qk if there was something you should have put there in
the first place. But what if we want to extend the features
of Stack in two different, incompatible ways?
—Code/feature bloat: introduces unnecessary
complication/clutter for users for whom the original Stack
class was adequate.

» copy-paste-modify Stack — MyStack?
Improvements/fixes of Stack will need to be repeated in
MyStack.

» include Stack attribute in new classes
Will work in some cases, but limited since we can’t change
anything about the internal representation of the stack.

5/16

class declaration

we subclass (extend) a superclass (base class) by:

» declaring that we're extending it. ..
class NewClass(0ldClass):

» add methods and attributes to specialize

» other methods and attributes are searched for in superclass

6/16

override versus extend

you may replace or modify old code

» subclass method with the same name replaces superclass
method

» access superclass method with
0ldClass.method(self,...)

» __init__ is a special case — careful

7/16

exceptions: richer communication

return types are not appropriate in all cases

» what’s wrong with IntStack returning a “special” integer
for pop-on-empty? Or returning None?

» push usually has return type None, but what if stuff
happens?

» what if the calling code doesn’t know what to do?

8/16

cause existing Exceptions:

» int("seven")

» a=1/0

» [1, 2]1[2]

9/16

cause existing Exceptions:

» int("seven")
builtins.ValueError: invalid literal for int()

with base 10: ’seven’

» a =1/0

» [1, 2]1[2]

9/16

cause existing Exceptions:

» int("seven")
builtins.ValueError: invalid literal for int()

with base 10: ’seven’

»a=1/0
builtins.ZeroDivisionError: division by zero

» [1, 2]1[2]

9/16

cause existing Exceptions:

» int("seven")
builtins.ValueError: invalid literal for int()

with base 10: ’seven’

»a=1/0
builtins.ZeroDivisionError: division by zero

» [1, 2][2]
builtins.IndexError: 1list index out of range

9/16

raise existing Exceptions:

» raise ValueError or...

» raise ValueError("you can’t do that!")

10/16

roll your own Exceptions:

> class ExtremeException(Exception):
pass

» raise ExtremeException

> raise ExtremeException(’I really take exception
to that!’)

11/16

exceptions: separation of concerns

—Suppose we're writing a chat client.

—We're fine with telling users that a prerequisite for using the client at all
is that you’re connected to the internet.

—Many places in the code where we need to do network communication,
which will fail if user is not connected to the internet.

—We can define a new type of exception (or use a built-in one) that gets
raised in many places but handled in one place.

ConnectionError is a built-in subclass of Exception

if __name__ == "__main__":

running = True
while running:
try:
con = establish_connection()
run_with_connection(con)
except ConnectionError
system.wait(5) # wait 5 seconds before trying again
todo: notify user, and increase parameter 5 each time

12/16

what makes two stack equivalent?

Tell Python with __eq__

Your __eq__ should really be equivalent: symmetrical,
reflexive, transitive
—Transitivity is the easiest property to accidentally get wrong.

13/16

represent in a reproducible way

Tell Python how to represent your object with __repr

Ideally, you should be able to cut-and-paste this representation
to create an equivalent object

14/16

extras 1: Nameless functions with lambda
—we didn’t look at this slide in class, but we’ll be covering this
later in the semester—
Writing (lambda x: one-line-function-body) in a given
place in your code accomplishes the same thing as first defining
a function

def fn_name(x):
one-line-function-body

and then writing fn name in that same place in your code.

def square(x:int):
return x**2
print (square(5)) print((lambda x: x**2)(5))

Nothing deep!
It is simply more-concise and doesn’t require you to introduce a
name for the function, which is good if you’re only going to

use the function once.
15/16

extras 2: Useful built-in functions to use with lambda

—we didn't look at this slide in class, but we’ll be covering this
later in the semester—

» filter(f, iterable_object) returns an object of the
same type as iterable_object that contains only the
elements z € iterable_object such that f (x) return true.
What’s this do?

filter(lambda x: x > 0, [1, O, 4, -1])

» map(f, iterable_object) returns an object of the same
type and size as iterable_object obtained by applying
the function f to each of iterable_object. What’s this
do?
map (lambda x: x**2, [1, 0, 4, -1])

You already know this one! Same as
[x**2 for x in [1,0,4,-1]]

16/16

	from previous weeks
	specialize software
	exceptions

