
CSC148 winter 2014

inheritance, Exceptions, special methods

week 3

Danny Heap (with additions by Dustin Wehr)

heap@cs.toronto.edu (dustin.wehr@utoronto.ca)

BA4270, behind elevators (SF4306D)

http://www.cdf.toronto.edu/~heap/148/W14/

January 23, 2014

1/16

http://www.cdf.toronto.edu/~heap/148/W14/

Topics today

I Specializing software
I inheritance
I extending vs. overriding
I calling superclass constructors (special case of __init__)

I Exceptions
I what they are
I why we use them
I raising
I catching (\except" clause)
I de�ning your own

2/16

from previous weeks

Confused/worried about properties?

https://piazza.com/class/hqaccaidcrq44o?cid=88

Very uncomfortable with recursion?

https://piazza.com/class/hqaccaidcrq44o?cid=94

3/16

Why have a Queue class. . .

. . . when list objects can do everything Queue objects can do,

plus more?

I Hard-to-ignore communication of the programmer's

intentions

documentation, basically

I More-e�cient implementation

4/16

Why have a Queue class. . .

. . . when list objects can do everything Queue objects can do,

plus more?

I Hard-to-ignore communication of the programmer's

intentions

documentation, basically

I More-e�cient implementation

4/16

Why have a Queue class. . .

. . . when list objects can do everything Queue objects can do,

plus more?

I Hard-to-ignore communication of the programmer's

intentions

documentation, basically

I More-e�cient implementation

4/16

specialize exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

{Ok if there was something you should have put there in

the �rst place. But what if we want to extend the features

of Stack in two di�erent, incompatible ways?

{Code/feature bloat: introduces unnecessary

complication/clutter for users for whom the original Stack

class was adequate.

I copy-paste-modify Stack �! MyStack?

Improvements/�xes of Stack will need to be repeated in

MyStack.

I include Stack attribute in new classes

Will work in some cases, but limited since we can't change

anything about the internal representation of the stack.

5/16

specialize exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

{Ok if there was something you should have put there in

the �rst place. But what if we want to extend the features

of Stack in two di�erent, incompatible ways?

{Code/feature bloat: introduces unnecessary

complication/clutter for users for whom the original Stack

class was adequate.

I copy-paste-modify Stack �! MyStack?

Improvements/�xes of Stack will need to be repeated in

MyStack.

I include Stack attribute in new classes

Will work in some cases, but limited since we can't change

anything about the internal representation of the stack.

5/16

specialize exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

{Ok if there was something you should have put there in

the �rst place. But what if we want to extend the features

of Stack in two di�erent, incompatible ways?

{Code/feature bloat: introduces unnecessary

complication/clutter for users for whom the original Stack

class was adequate.

I copy-paste-modify Stack �! MyStack?

Improvements/�xes of Stack will need to be repeated in

MyStack.

I include Stack attribute in new classes

Will work in some cases, but limited since we can't change

anything about the internal representation of the stack.

5/16

specialize exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

{Ok if there was something you should have put there in

the �rst place. But what if we want to extend the features

of Stack in two di�erent, incompatible ways?

{Code/feature bloat: introduces unnecessary

complication/clutter for users for whom the original Stack

class was adequate.

I copy-paste-modify Stack �! MyStack?

Improvements/�xes of Stack will need to be repeated in

MyStack.

I include Stack attribute in new classes

Will work in some cases, but limited since we can't change

anything about the internal representation of the stack.

5/16

specialize exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

{Ok if there was something you should have put there in

the �rst place. But what if we want to extend the features

of Stack in two di�erent, incompatible ways?

{Code/feature bloat: introduces unnecessary

complication/clutter for users for whom the original Stack

class was adequate.

I copy-paste-modify Stack �! MyStack?

Improvements/�xes of Stack will need to be repeated in

MyStack.

I include Stack attribute in new classes

Will work in some cases, but limited since we can't change

anything about the internal representation of the stack.

5/16

class declaration

we subclass (extend) a superclass (base class) by:

I declaring that we're extending it. . .

class NewClass(OldClass):

...

I add methods and attributes to specialize

I other methods and attributes are searched for in superclass

6/16

override versus extend

you may replace or modify old code

I subclass method with the same name replaces superclass

method

I access superclass method with

OldClass.method(self,...)

I __init__ is a special case | careful

7/16

exceptions: richer communication

return types are not appropriate in all cases

I what's wrong with IntStack returning a \special" integer

for pop-on-empty? Or returning None?

I push usually has return type None, but what if stu�

happens?

I what if the calling code doesn't know what to do?

8/16

cause existing Exceptions:

I int("seven")

builtins.ValueError: invalid literal for int()

with base 10: ’seven’

I a = 1/0

builtins.ZeroDivisionError: division by zero

I [1, 2][2]

builtins.IndexError: list index out of range

9/16

cause existing Exceptions:

I int("seven")

builtins.ValueError: invalid literal for int()

with base 10: ’seven’

I a = 1/0

builtins.ZeroDivisionError: division by zero

I [1, 2][2]

builtins.IndexError: list index out of range

9/16

cause existing Exceptions:

I int("seven")

builtins.ValueError: invalid literal for int()

with base 10: ’seven’

I a = 1/0

builtins.ZeroDivisionError: division by zero

I [1, 2][2]

builtins.IndexError: list index out of range

9/16

cause existing Exceptions:

I int("seven")

builtins.ValueError: invalid literal for int()

with base 10: ’seven’

I a = 1/0

builtins.ZeroDivisionError: division by zero

I [1, 2][2]

builtins.IndexError: list index out of range

9/16

raise existing Exceptions:

I raise ValueError or. . .

I raise ValueError("you can’t do that!")

10/16

roll your own Exceptions:

I class ExtremeException(Exception):

pass

I raise ExtremeException

I raise ExtremeException(’I really take exception

to that!’)

11/16

exceptions: separation of concerns

{Suppose we're writing a chat client.

{We're �ne with telling users that a prerequisite for using the client at all

is that you're connected to the internet.

{Many places in the code where we need to do network communication,

which will fail if user is not connected to the internet.

{We can de�ne a new type of exception (or use a built-in one) that gets

raised in many places but handled in one place.

ConnectionError is a built-in subclass of Exception

if __name__ == "__main__":

running = True

while running:

try:

con = establish_connection()

run_with_connection(con)

except ConnectionError

system.wait(5) # wait 5 seconds before trying again

todo: notify user, and increase parameter 5 each time

12/16

what makes two stack equivalent?

Tell Python with __eq__

Your __eq__ should really be equivalent: symmetrical,

reexive, transitive

{Transitivity is the easiest property to accidentally get wrong.

13/16

represent in a reproducible way

Tell Python how to represent your object with __repr__

Ideally, you should be able to cut-and-paste this representation

to create an equivalent object

14/16

extras 1: Nameless functions with lambda
{we didn't look at this slide in class, but we'll be covering this

later in the semester{

Writing (lambda x: one-line-function-body) in a given

place in your code accomplishes the same thing as �rst de�ning

a function

def fn_name(x):

one-line-function-body

and then writing fn name in that same place in your code.

def square(x:int):

return x**2

print(square(5)) print((lambda x: x**2)(5))

Nothing deep!

It is simply more-concise and doesn't require you to introduce a

name for the function, which is good if you're only going to

use the function once.
15/16

extras 2: Useful built-in functions to use with lambda

{we didn't look at this slide in class, but we'll be covering this

later in the semester{

I filter(f, iterable object) returns an object of the

same type as iterable object that contains only the

elements x 2 iterable object such that f(x) return true.

What's this do?

filter(lambda x: x > 0, [1, 0, 4, -1])

I map(f, iterable object) returns an object of the same

type and size as iterable object obtained by applying

the function f to each of iterable object. What's this

do?

map(lambda x: x**2, [1, 0, 4, -1])

You already know this one! Same as

[x**2 for x in [1,0,4,-1]]

16/16

	from previous weeks
	specialize software
	exceptions

