CSC148 winter 2014
 sorting, recursion limits
 week 11

Danny Heap / Dustin Wehr heap@cs.toronto.edu / dustin.wehr@utoronto.ca BA4270 / SF4306D http://www.cdf.toronto.edu/~heap/148/F13/

March 28, 2014

Outline

$\mathcal{O}(n \lg n)$ sorts compared

memoization

You had the chance in lab to tweak merge_sort, quick_sort, and tim-sort (Python's built-in sort). Running sort.py gives an idea of how they scale.

- why does tim-sort do so well?
- $\mathcal{O}(n)$ on "nearly-sorted" lists. In general, the closer to sorted the list is, the greater the speedup compared to quick sort and merge sort.
- programmed in C (closer to the language understood by the processor)
- what is with count_sort anyway?

running out of stack

Some programming languages implement the simplest recursions as loops, but Python doesn't. One consequence is that our first draft of _contains_ can easily exceed the recursion depth. Rewrite it with while

redundant function calls

The most intuitive version of fibonacci ends up making many redundant function calls:

```
def fib(n):
    """Return the nth fibonacci number"""
    if n < 2:
        return n
    else:
        return fib(n - 1) + fib(n - 2)
```

e.g. $f i b(20)$ calls $f i b(19)$ and $f i b(18)$, and $f i b(19)$ also calls $f i b(18)$, so executing $f i b(20)$ results in two separate, independent computations of $f i b(18)$.

memoize!

e.g. $f i b(20)$ calls $f i b(19)$ and $f i b(18)$, and $f i b(19)$ also calls fib(18), so executing fib(20) results in two separate, independent computations of fib(18).

Looking deeper into the recursive calls reveals that the redundancy is compounded. $\mathrm{fib}(\mathrm{n})$ will execute in time exponential in n , but possible to do it in time $\mathcal{O}(n)$.

Never compute the same thing twice (if you can help it)!

fibonacci with memoization

```
def fib(n:int):
    """Return the nth fibonacci number"""
    computed = {} # already-computed values of fib
    def fibmem(k:int):
    if k in computed: # this and next op are O(1)
        return computed[k]
    elif k < 2:
    computed[k] = k
    else:
    computed[k] = fibmem(k - 1) + fibmem(k - 2)
    return computed[k]
return fibmem(n)
```

