
CSC148 winter 2014

sorting, recursion limits

week 11

Danny Heap / Dustin Wehr

heap@cs.toronto.edu / dustin.wehr@utoronto.ca

BA4270 / SF4306D

http://www.cdf.toronto.edu/~heap/148/F13/

March 28, 2014

1/7

http://www.cdf.toronto.edu/~heap/148/F13/


Outline

O(n lgn) sorts compared

memoization

2/7



You had the chance in lab to tweak merge sort, quick sort, and

tim-sort (Python's built-in sort). Running sort.py gives an idea

of how they scale.

I why does tim-sort do so well?
I O(n) on \nearly-sorted" lists. In general, the closer to

sorted the list is, the greater the speedup compared to

quick sort and merge sort.
I programmed in C (closer to the language understood by the

processor)

I what is with count sort anyway?

3/7



running out of stack

Some programming languages implement the simplest

recursions as loops, but Python doesn't. One consequence is

that our �rst draft of contains can easily exceed the recursion

depth. Rewrite it with while

4/7



redundant function calls

The most intuitive version of �bonacci ends up making many

redundant function calls:

def fib(n):

"""Return the nth fibonacci number"""

if n < 2:

return n

else:

return fib(n - 1) + fib(n - 2)

e.g. fib(20) calls fib(19) and fib(18), and fib(19) also

calls fib(18), so executing fib(20) results in two separate,

independent computations of fib(18).

5/7



memoize!

e.g. fib(20) calls fib(19) and fib(18), and fib(19) also

calls fib(18), so executing fib(20) results in two separate,

independent computations of fib(18).

Looking deeper into the recursive calls reveals that the

redundancy is compounded. fib(n) will execute in time

exponential in n, but possible to do it in time O(n).

Never compute the same thing twice (if you can help it)!

6/7



�bonacci with memoization

def fib(n:int):

"""Return the nth fibonacci number"""

computed = {} # already-computed values of fib

def fibmem(k:int):

if k in computed: # this and next op are O(1)

return computed[k]

elif k < 2:

computed[k] = k

else:

computed[k] = fibmem(k - 1) + fibmem(k - 2)

return computed[k]

return fibmem(n)

7/7


	O(nlgn) sorts compared
	memoization

