CSC148 winter 2014

sorting big-oh
week 10

Danny Heap / Dustin Wehr
heap@cs.toronto.edu / dustin.wehr@utoronto.ca
BA4270 / SF4306D
http://www.cdf.toronto.edu/ heap/148/F13/

March 23, 2014

1/19

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

assignment # 2 questions

more big-oh, better sorts

2/19

is regex(s)

Returns True if the string s is a valid regular expression, False
otherwise. Think about. ..

» simplest expressions — how can you check for these and
reject many strings?

» binary expressions — | and . — how can you check for
these? How can you break up the remainder of the string
so that you can check it?

» unary expressions — * — how can you check for these?
how can you break up the remainder of the string so that
you can check it?

3/19

all regex permutations(s)

Returns a set (could be empty) of permutations of s that are
valid regular expressions. Think about. ..

» how to produce a set of permutations? There is lots of code
laying about, including in week 4 of this course’s calendar

» filter out any permutation that isn't a regex — it would
sure be nice to have some code that could test whether a
string were a regex...

» a string of length n has n-factorial permutations —
producing an impractically large set for n > 8.
— We will only test your code on strings of length < 8.

4/19

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/dustin/W4/gen_perms.py

regex match(r, s)

Returns True if string s matches the regular expression
equivalent to the tree rooted at r, False otherwise. Think
about. ..

» you may assume that r is an instance of one of the
specialized regular expression tree classes in regextree.py

» what are the simplest cases of string s to consider?

» if the symbol at the root of r is a |, what do you need to
check?

> if the symbol at the root of ris a ., what do you need to
check?

» if the symbol at the root of r is a *, what do you need to
check? This is the hardest case; complete the others first.

(more on this next slide)

5/19

debugging regex match tip

doctests only using 1 2 e .
doctests only using 1 2 e |
doctests only using 1 2 e *
doctests only using 12 e | .
doctests only using 1 2 e . *
doctests only using 1 2 e | *
doctests using all the symbols
etc

6/19

star regexes...

The handout says that a string s matches a regular expression
r* (where r is the child regular expression) if and only if:

» s is the empty string — pretty easy to check OR

> $ =51 + S5 +---+ s, where each s; matches the child
regular expression r. This seems harder to check — so
many ways to break up s!

» equivalently (why?) s = s; + s», where s; matches the child
regular expression r and s, matches r* — now you only
have to check every possible way to break s into two pieces.

7/19

build regex tree(r)

Return the regular expression tree equivalent to the valid (we
promise) regular expression regex. Think about:

» very similar thinking to is_regex

» instead of checking whether regex is a regular expression
(you are guaranteed that it is), you have to break it into a
few pieces to determine which sort of regular expression
tree, and provide input strings to form its children (if any)

» strangely, that’s all there is to do!

8/19

a digression. ..

what could go wrong?

def f(n: int, L: list=[]) -> list:
L.append(n)
return L

>>> £(10)

[10]

>>> £(9)

[10,9]

or

>>> X = [[1]%3
>>> X[0] .append(1)
>>> X

CC11, (11, [1]]

9/19

quick sort

1dea:

somehow choose a pivot element

move everything smaller than the pivot to one list (call it
left) and everything larger than the pivot to another list
(call it right).

quicksort the sublists left and right (two recursive calls)

now sorted list is left followed by the pivot followed by right

10/19

quick sort code

def quick(L):
if len(L) > 1:
there are much better ways of choosing the pivot!
pivot = L[0]
smaller_than_pivot = [x for x in L[1:] if x < pivot]
larger_than_pivot = [x for x in L[1:] if x >= pivot]
return (quick(smaller_than_pivot) +
[pivot] +
quick(larger_than_pivot))
else:
return L

11/19

quick sort performance

» how many times do we choose the pivot?
O(n)
more specifically n + some constant
» how many steps each time we choose a pivot?

linear in the size of the sublist... which gets smaller after
each recursive call

12/19

merge sort

idea:
» divide the list in half

» mergesort the two halves (two recursive calls)

» merge the two sorted halves in linear time

13/19

merge code

def merge(L1l:1list, L2:1ist) -> list:
"""return merge of L1 and L2

NOTE: modifies L1 and L2"""

decreasing_from_largest = []
while L1 and L2:
if L1[-1] > L2[-1]:
decreasing_from_largest.append(L1l.pop())
else:
decreasing_from_largest.append(L2.pop())
decreasing_from_largest.reverse()
return L1 + L2 + decreasing _from_largest

14/19

merge sort code

def merge_sort(L):
"""Produce copy of L in non-decreasing order

>>> merge_sort([1, 5, 3, 4, 2])
[1, 2, 3, 4, 5]
if len(L) < 2:
return L
else:
left_sublist = L[:len(L)//2]
right_sublist = L[len(L)//2:]
return merge (merge_sort(left_sublist),
merge_sort (right_sublist))

15/19

merge sort performance

» how many times do we split the list in half?
O(n)
more specifically n + some constant
» how many steps each time we split?

linear in the size of the sublist... which has size ~ n/2¢
when we’re d function calls deep into the recursion.

16/19

how do we know merge sort runs in time O(n log n)?

>

Splitting a size n list into two halfs takes constant time or time
O(n) depending on the data structure.

Merging two sorted lists of size n/2 each takes time O(n)
So the split/merge tasks together run in linear time.

Which means there are constants cg, d such that cgn + d is a
upper bound on the runtime.

Let c=cy+ d. Then ¢ > cgn + d for all n > 1.
So cn is also a bound on the runtime for the split/merge tasks.

We do the split/merge tasks once on a size n list (the input) -
takes time cn.

We do those tasks 2 times on size n/2 sublists - takes time
2(¢(n/2)) = cn.

We do those tasks 4 times on size n/4 sublists - takes time
4(c(n/4)) = cn.

17/19

how do we know merge sort runs in time O(n log n)?

> So cn is also a bound on the runtime for the split/merge tasks.

> We do the split/merge tasks once on a size n sublist (the input)
- takes time cn.

» We do the split/merge tasks 2 times on size n/2 sublists - takes
time 2(¢(n/2)) = cn.

» We do the split/merge tasks 2% times on size n/2¢ sublists -
takes time 2¢(c(n/2¢%)) = cn.

And that is all the work we do!
When d = log n, the sub lists have size 1, in which case we don’t do
any more recursive calls.

So runtime =
logn logn
Z (time spent on size n /2% lists) = Z cn =cnlogn — cn
d=1 d=1

18/19

scaling:

How well do these various sorts perform as the size of the
problem (list length) increases? Time and compare.

19/19

	assignment # 2 questions
	more big-oh, better sorts

