
CSC148 winter 2014
sorting big-oh

week 10

Danny Heap / Dustin Wehr

heap@cs.toronto.edu / dustin.wehr@utoronto.ca

BA4270 / SF4306D

http://www.cdf.toronto.edu/~heap/148/F13/

March 23, 2014

1/19

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

assignment # 2 questions

more big-oh, better sorts

2/19

is regex(s)

Returns True if the string s is a valid regular expression, False

otherwise. Think about. . .

I simplest expressions | how can you check for these and

reject many strings?

I binary expressions | | and . | how can you check for

these? How can you break up the remainder of the string

so that you can check it?

I unary expressions | * | how can you check for these?

how can you break up the remainder of the string so that

you can check it?

3/19

all regex permutations(s)

Returns a set (could be empty) of permutations of s that are

valid regular expressions. Think about. . .

I how to produce a set of permutations? There is lots of code

laying about, including in week 4 of this course's calendar

I �lter out any permutation that isn't a regex | it would

sure be nice to have some code that could test whether a

string were a regex. . .

I a string of length n has n-factorial permutations |

producing an impractically large set for n > 8.

�! We will only test your code on strings of length � 8.

4/19

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/dustin/W4/gen_perms.py

regex match(r, s)

Returns True if string s matches the regular expression

equivalent to the tree rooted at r, False otherwise. Think

about. . .

I you may assume that r is an instance of one of the

specialized regular expression tree classes in regextree.py

I what are the simplest cases of string s to consider?

I if the symbol at the root of r is a |, what do you need to

check?

I if the symbol at the root of r is a ., what do you need to

check?

I if the symbol at the root of r is a *, what do you need to

check? This is the hardest case; complete the others first.

(more on this next slide)

5/19

debugging regex match tip

doctests only using 1 2 e :

doctests only using 1 2 e j

doctests only using 1 2 e �

doctests only using 1 2 e j :

doctests only using 1 2 e : �

doctests only using 1 2 e j �

doctests using all the symbols

etc

6/19

star regexes...

The handout says that a string s matches a regular expression

r* (where r is the child regular expression) if and only if:

I s is the empty string | pretty easy to check OR

I s = s1 + s2 + � � �+ sk where each si matches the child

regular expression r. This seems harder to check | so

many ways to break up s!

I equivalently (why?) s = s1 + s2, where s1 matches the child

regular expression r and s2 matches r* | now you only

have to check every possible way to break s into two pieces.

7/19

build regex tree(r)

Return the regular expression tree equivalent to the valid (we

promise) regular expression regex. Think about:

I very similar thinking to is regex

I instead of checking whether regex is a regular expression

(you are guaranteed that it is), you have to break it into a

few pieces to determine which sort of regular expression

tree, and provide input strings to form its children (if any)

I strangely, that's all there is to do!

8/19

a digression. . .

what could go wrong?

def f(n: int, L: list=[]) -> list:

L.append(n)

return L

>>> f(10)

[10]

>>> f(9)

[10,9]

or

>>> X = [[]]*3

>>> X[0].append(1)

>>> X

[[1],[1],[1]]

9/19

quick sort

idea:

I somehow choose a pivot element

I move everything smaller than the pivot to one list (call it

left) and everything larger than the pivot to another list

(call it right).

I quicksort the sublists left and right (two recursive calls)

I now sorted list is left followed by the pivot followed by right

10/19

quick sort code

def quick(L):

if len(L) > 1:

there are much better ways of choosing the pivot!

pivot = L[0]

smaller_than_pivot = [x for x in L[1:] if x < pivot]

larger_than_pivot = [x for x in L[1:] if x >= pivot]

return (quick(smaller_than_pivot) +

[pivot] +

quick(larger_than_pivot))

else:

return L

11/19

quick sort performance

I how many times do we choose the pivot?

O(n)

more speci�cally n + some constant

I how many steps each time we choose a pivot?

linear in the size of the sublist... which gets smaller after

each recursive call

12/19

merge sort

idea:

I divide the list in half

I mergesort the two halves (two recursive calls)

I merge the two sorted halves in linear time

13/19

merge code

def merge(L1:list, L2:list) -> list:

"""return merge of L1 and L2

NOTE: modifies L1 and L2"""

decreasing_from_largest = []

while L1 and L2:

if L1[-1] > L2[-1]:

decreasing_from_largest.append(L1.pop())

else:

decreasing_from_largest.append(L2.pop())

decreasing_from_largest.reverse()

return L1 + L2 + decreasing_from_largest

14/19

merge sort code

def merge_sort(L):

"""Produce copy of L in non-decreasing order

>>> merge_sort([1, 5, 3, 4, 2])

[1, 2, 3, 4, 5]

"""

if len(L) < 2:

return L

else:

left_sublist = L[:len(L)//2]

right_sublist = L[len(L)//2:]

return merge(merge_sort(left_sublist),

merge_sort(right_sublist))

15/19

merge sort performance

I how many times do we split the list in half?

O(n)

more speci�cally n + some constant

I how many steps each time we split?

linear in the size of the sublist... which has size � n=2d

when we're d function calls deep into the recursion.

16/19

how do we know merge sort runs in time O(n logn)?

I Splitting a size n list into two halfs takes constant time or time

O(n) depending on the data structure.

I Merging two sorted lists of size n=2 each takes time O(n)

I So the split/merge tasks together run in linear time.

I Which means there are constants c0; d such that c0n + d is a

upper bound on the runtime.

I Let c = c0 + d . Then c � c0n + d for all n � 1.

I So cn is also a bound on the runtime for the split/merge tasks.

I We do the split/merge tasks once on a size n list (the input) -

takes time cn .

I We do those tasks 2 times on size n=2 sublists - takes time

2(c(n=2)) = cn .

I We do those tasks 4 times on size n=4 sublists - takes time

4(c(n=4)) = cn .

I . . .
17/19

how do we know merge sort runs in time O(n logn)?

I So cn is also a bound on the runtime for the split/merge tasks.

I We do the split/merge tasks once on a size n sublist (the input)

- takes time cn .

I We do the split/merge tasks 2 times on size n=2 sublists - takes

time 2(c(n=2)) = cn .

I We do the split/merge tasks 2d times on size n=2d sublists -

takes time 2d (c(n=2d)) = cn .

And that is all the work we do!

When d = logn , the sub lists have size 1, in which case we don't do

any more recursive calls.

So runtime =

log nX

d=1

(time spent on size n=2d lists) =

log nX

d=1

cn = cn logn � cn

18/19

scaling:

How well do these various sorts perform as the size of the

problem (list length) increases? Time and compare.

19/19

	assignment # 2 questions
	more big-oh, better sorts

