CSC148 winter 2014

BSTs, big-Oh
week 9

Danny Heap heap@cs.toronto.edu
BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/W14/
416-978-5899

March 12, 2014

Outline

performance

big-oh

UNIVERSITY OF TORONTO
\square

traversal task...

by hand
on its own, neither a preorder nor inorder traversal exactly specify a tree, but together...
[10, 6, 8, 12, 11, 15] (pre-order)
[8, 6, 12, 10, 11, 15] (inorder)

wrapper/node binary tree

instead of single tree class, separate node and bst classes:
class BTNode:
"""Binary Tree node."""

$$
\begin{aligned}
\text { def __init__ } & \text { self: 'BTNode', data: object, } \\
& \text { left: 'BTNode'=None, } \\
& \text { right: 'BTNode'=None) } \rightarrow \text { None: }
\end{aligned}
$$

"""Create BT node with data, children left and right.""" self.data, self.left, self.right = data, left, right

binary search tree

Add a condition: data in left subtree is less than that in the root, which in turn is less than that in right subtree. Now search is more efficient...
class BST:
"""Binary search tree."""
def __init__(self: 'BST', root: BTNode=None) -> None:
"""Create BST with BTNode root."""
self._root $=$ root

deletion of data from BST rooted at node?

- what return value?
- what to do if node is None?
- what if data to delete is less than that at node?
- what if it's more?
- what if the data equals this node's data and...
- this node has no left child
- ... no right child?
- both children?

recall list searching

You've already seen algorithms for seeing whether an element is contained in a list:
$[97,36,48,73,156,947,56,236]$
What is the performance of these algorithms in terms of list size? What about the analogous algorithm for a tree?

BST efficiency?

Binary search of a list allowed us to ignore (roughly) half the list. Searching a binary search tree allows us to ignore the left or right subtree - nearly half in a well-balanced tree.
If we're searching the tree rooted at node n for value v, then one of three situations are possible:

- node n has value v
- v is less than node n 's value, so we should search to the left
- v is more than node n 's value, so we should search to the right

performance...

We want to measure algorithm performance, independent of hardware, programming language, random events

Focus on the size of the input, call it n. How does this affect the resources (e.g. processor time) required for the output? If the relationship is linear, our algorithm's complexity is $\mathcal{O}(n)$ roughy proportional to the input size n.

running time analysis

algorithm's behaviour over large input (size \mathbf{n}) is common way to compare performance - how does performance vary as \mathbf{n} changes?
constant: $c \in \mathbb{R}^{+}$(some positive number)
logarithmic: $c \log n$
linear: $c n$ (probably not the same c)
quadratic: $c n^{2}$
cubic: $c n^{3}$
exponential: $c 2^{n}$
horrible: $c n^{n}$ or $c n$!

less-than-stellar sorting...

express some crude "number of steps" for these algorithms ignore differences between steps that do not depend on the list size n
selection sort: for each list position from 0 to $n-2$, linear-search the remaining elements to find the minimum, and if it is smaller than the element at the current position, swap them.
insertion sort: for each list position from 1 to the end of the list, compare it to each previous element until you find one that is not larger than it, and insert element there.

running time analysis

abstract away difference between similar worst-case performance, e.g.

- one algorithm runs in $\left(0.3365 n^{2}+0.17 n+0.32\right) \mu s$
- another algorithm runs in $\left(0.47 n^{2}+0.08 n\right) \mu s$
- in both cases doubling n quadruples the run time. We say both algorithms are $\mathcal{O}\left(n^{2}\right)$ or "order $n^{2 "}$ or "oh-n-squared" behaviour.

asymptotics

If any reasonable implementation of an algorithm, on any reasonable computer, runs in number of steps no more than $c g(n)$ (some constant c), we say the algorithm is $\mathcal{O}(g)$. Graphing various examples where $g(n)=n^{2}$ shows why we ignore the constant c as n gets large (say $7 n^{2}, 2 n^{2}+1$ versus $43 n+2, n=1297)$.
case: $\lg n$
this is the number of times you can divide n in half before reaching 1 .

- refresher: $a^{b}=c$ means $\log _{a} c=b$.
- this runtime behaviour often occurs when we "divide and conquer" a problem (e.g. binary search)
- we usually assume $\lg n$ (\log base 2), but the difference is only a constant:

$$
2^{\log _{2} n}=n=10^{\log _{10} n} n \Longrightarrow \log _{2} n=\log _{2} 10 \times \log _{10} n
$$

- so we just say $\mathcal{O}(\lg n)$.

hierarchy

Since big-oh is an upper-bound the various classes fit into a hierarchy:

$$
\mathcal{O}(1) \subseteq \mathcal{O}(\lg n) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}\left(n^{2}\right) \subseteq \mathcal{O}\left(n^{3}\right) \subseteq \mathcal{O}\left(2^{n}\right) \subseteq \mathcal{O}\left(n^{n}\right)
$$

