
CSC148 winter 2014

BSTs, big-Oh

week 9

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/W14/

416-978-5899

March 10, 2014



Outline

performance

big-oh



wrapper/node binary tree

instead of single tree class, separate node and bst classes:

class BTNode:

"""Binary Tree node."""

def __init__(self: ’BTNode’, data: object,

left: ’BTNode’=None,

right: ’BTNode’=None) -> None:

"""Create BT node with data, children left and right."""

self.data, self.left, self.right = data, left, right



binary search tree

Add a condition: data in left subtree is less than that in the root,

which in turn is less than that in right subtree. Now search is more

e�cient...

class BST:

"""Binary search tree."""

def __init__(self: ’BST’, root: BTNode=None) -> None:

"""Create BST with BTNode root."""

self._root = root



deletion of data from BST rooted at node?

I what return value?

I what to do if node is None?

I what if data to delete is less than that at node?

I what if it's more?

I what if the data equals this node's data and...

I this node has no left child

I ... no right child?

I both children?



recall list searching

You've already seen algorithms for seeing whether an element is

contained in a list:

[97, 36, 48, 73, 156, 947, 56, 236]

What is the performance of these algorithms in terms of list

size? What about the analogous algorithm for a tree?



BST e�ciency?

Binary search of a list allowed us to ignore (roughly) half the

list. Searching a binary search tree allows us to ignore the left or

right subtree | nearly half in a well-balanced tree.

If we're searching the tree rooted at node n for value v , then

one of three situations are possible:

I node n has value v

I v is less than node n 's value, so we should search to the left

I v is more than node n 's value, so we should search to the

right



performance. . .

We want to measure algorithm performance, independent of

hardware, programming language, random events

Focus on the size of the input, call it n . How does this a�ect

the resources (e.g. processor time) required for the output? If

the relationship is linear, our algorithm's complexity is O(n) |

roughy proportional to the input size n .



running time analysis

algorithm's behaviour over large input (size n) is common way

to compare performance | how does performance vary as n

changes?

constant: c 2 R+ (some positive number)

logarithmic: c logn

linear: cn (probably not the same c)

quadratic: cn2

cubic: cn3

exponential: c2n

horrible: cnn or cn !



running time analysis

abstract away di�erence between similar worst-case

performance, e.g.

I one algorithm runs in (0:3365n2 + 0:17n + 0:32)�s

I another algorithm runs in (0:47n2 + 0:08n)�s

I in both cases doubling n quadruples the run time. We say

both algorithms are O(n2) or \order n2" or

\oh-n-squared" behaviour.



asymptotics

If any reasonable implementation of an algorithm, on any

reasonable computer, runs in number of steps no more than

cg(n) (some constant c), we say the algorithm is O(g(n)).

Graphing various examples where g(n) = n2 shows how we

ignore the constant c as n gets large (say 7n2
; 2n2 + 1 versus

43n + 2;n = 1297).



case: lgn

this is the number of times you can divide n in half before

reaching 1.

I refresher: ab = c means loga c = b.

I this runtime behaviour often occurs when we \divide and

conquer" a problem (e.g. binary search)

I we usually assume lgn (log base 2), but the di�erence is

only a constant:

2log2 n = n = 10log10n =) log2 n = log2 10� log10 n

I so we just say O(lgn).



hierarchy

Since big-oh is an upper-bound the various classes �t into a

hierarchy:

O(1) � O(lgn) � O(n) � O(n2) � O(n3) � O(2n) � O(nn)


