
CSC148 winter 2014

recursive structures

week 6

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

February 12, 2014



Outline



recursion, natural and otherwise



terminology

I set of nodes (possibly with values or labels), with directed edges

between some pairs of nodes

I One node is distinguished as root

I Each non-root node has exactly one parent.

I A path is a sequence of nodes n1;n2; : : : ;nk , where there is an

edge from ni to ni+1. The length of a path is the number of

edges in it

I There is a unique path from the root to each node. In the case of

the root itself this is just n1, if the root is node n1.

I There are no cycles | no paths that form loops.



more terminology

I leaf: node with no children

I internal node: node with one or more children

I subtree: tree formed by any tree node together with its

descendants and the edges leading to them.

I height: Maximum path length in a tree. A node also de�nes a

height, which is the maximum path length of the tree rooted at

that node

I arity, branching factor: maximum number of children for any node.



pre-order traversal

Visit root, then pre-order left subtree, then pre-order right

subtree



exercise: code for preorder traversal

"""

A TreeList is either None or a Python list with 3 elements, where

--- element 0 is a value

--- element 1 is a TreeList

--- element 2 is a TreeList

"""

def preorder(tl: ’TreeList’) -> list:

"""

Return list of values in tl in preorder

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]

>>> preorder(T)

[5, 4, 3, 2, 1]

"""



in-order traversal

Visit in-order left subtree, then root, then in-order right subtree



exercise: code for inorder traversal

"""

A TreeList is either None or a Python list with 3 elements, where

--- element 0 is a value

--- element 1 is a TreeList

--- element 2 is a TreeList

"""

def inorder(tl: ’TreeList’) -> list:

"""

Return list of values in tl in order

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]

>>> inorder(T)

[4, 5, 2, 3, 1]

"""



post-order traversal

Visit post-order left subtree, then post-order right subtree, then

root



exercise: code for postorder traversal

"""

A TreeList is either None or a Python list with 3 elements, where

--- element 0 is a value

--- element 1 is a TreeList

--- element 2 is a TreeList

"""

def postorder(tl: ’TreeList’) -> list:

"""

Return list of values in tl in postorder

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]

>>> postorder(T)

[4, 2, 1, 3, 5]

"""



general tree implementation

Python list class has way more methods and attributes than
needed. Let's specialize on Tree ADT.

class Tree:

def __init__(self: ’Tree’,

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:

"""True if Tree has a node with value

"""

return (self.value == value or

any([t.__contains__(value) for t in self.children]))



general tree implementation

Python list class has way more methods and attributes than
needed. Let's specialize on Tree ADT.

class Tree:

def __init__(self: ’Tree’,

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:

"""True if Tree has a node with value

"""

return (self.value == value or

any([t.__contains__(value) for t in self.children]))



general tree implementation

Python list class has way more methods and attributes than
needed. Let's specialize on Tree ADT.

class Tree:

def __init__(self: ’Tree’,

value: object =None, children: list =None):

"""Create a node with value and any number of children"""

self.value = value

if not children:

self.children = []

else:

self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:

"""True if Tree has a node with value

"""

return (self.value == value or

any([t.__contains__(value) for t in self.children]))


