g 0Gs —

Lb

Leed bock m SLoGs
— chdd wM A

CSC148 winter 2014

recursive structures
week 6

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/148/F13/
416-978-5899

February 12, 2014

o
% UN[VERSITY OF TORONTO

Outline

a
Computer Science
UNIVERSITY OF TORONTO

recursion, natural and otherwise

terminology

> set of nodes (possibly with values or labels), with directed edges
between some pairs of nodes ?

> One node is distinguished as root /
> Each non-root node has on

» A path is a sequence of nodes ny, ny, ..., ng, where there is an
edge from n; to n; ;. The length of a path is the number of

edges in it -

> There is path from the root to each node. In the case of

the root itself this is just ny, if the root is node n;.

» There are no cycles — no paths that form loops.

&
Gy Computer Science
v UNIVERSITY OF TORONTO

more terminology

» leaf: node with no children
» internal node: node with one or more children

> subtree: tree formed by any tree node together with its
descendants and the edges leading to them.

» height: Maximum path length in a tree. A node also defines a
height, which is the maximum path length of the tree rooted at
that node

» arity, branching factor: maximum number of children for any node.

&
Gy Computer Science
w UNIVERSITY OF TORONTO

pre-order traversal
DTe-0rae

Visit root, then pre-order left subtree, then pre-order right
e —

subtree

o
% UN[VERSITY OF TORONTO

exercise: code for preorder traversal

A TreeList is either None or a Python list with 3 elements, where
--- element 0 is a value
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def preorder(tl: ’TreeList’) -> list:

Return list of values in tl in preorder

- .
>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]
>>> preorder(T)
[5, 4, 3, 2,

refu [tﬁb pre ko

a
Computer Science
&7 UNIVERSITY OF TORONTO

in-order traversal

lXisit in-order left subtree, then root, then in-order right subtree

—

L4

Computer Science
&7 UNIVERSITY OF TORONTO

exercise: code for inorder traversal

i

A Treelist is either(None,or a Python list with 3 elements, where
--- element 0 is a value _
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def inorder(tl: ’TreelList’) -> list:

Return list of values in tl in order

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]
>>> inorder(T)

e 07 it ahae ik (000) + [HE]
return [c@ m +'MMJ,1('LQC11>

a
Computer Science
&7 UNIVERSITY OF TORONTO

post-order traversal

Visit post-order left subtree, then post-order right subtree, then
root

&
Gy Computer Science
w UNIVERSITY OF TORONTO

exercise: code for postorder traversal

wun

A TreeList is either None or a Python list with 3 elements, where
--- element 0 is a value
--- element 1 is a TreelList

--- element 2 is a TreelList
i

def postorder(tl: ’TreeList’) -> list:

Return list of values in tl in postorder

>>> T = [5, [4, None, None], [3, [2, None, None], [1, None, None]]]

>>> postorder (T)
[4, 2, 1, 3, 8]

a
Computer Science
&7 UNIVERSITY OF TORONTO

general tree implementation

Python list class has way more methods and attributes than
needed. Let’s specialize on Tree ADT.

class Tree:
def __init__(self: ’Tree’,
value: object =None, children: list =Nomne):
"""Create a node with value and any number of children"""

self.value = value
if not children:
self.children = []
else:
self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:
"""True if Tree has a node with value
nun
return (self.value == value or
any([t.__contains__(value) for t in self.children]))

3 Computer Science
UNIVERSITY OF TORONTO

general tree implementation

Python list class has way more methods and attributes than
needed. Let’s specialize on Tree ADT.

class Tree:
def __init__(self: ’Tree’,
value: object =None, children: list =Nomne):
"""Create a node with value and any number of children"""

self.value = value
if not children:
self.children = []
else:
self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:
"""True if Tree has a node with value
nun
return (self.value == value or
any([t.__contains__(value) for t in self.children]))

3 Computer Science
UNIVERSITY OF TORONTO

general tree implementation

Python list class has way more methods and attributes than
needed. Let’s specialize on Tree ADT.

class Tree:
def __init__(self: ’Tree’,
value: object =None, children: list =Nomne):
"""Create a node with value and any number of children"""

self.value = value
if not children:
self.children = []
else:
self.children = children[:] # quick-n-dirty copy of list

def __contains__(self: ’Tree’ , value: object) -> bool:
"""True if Tree has a node with value
nun
return (self.value == value or
any([t.__contains__(value) for t in self.children]))

3 Computer Science
UNIVERSITY OF TORONTO

