
CSC148 winter 2014

more recursion

week 4

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

January 29, 2014

Outline

Class design for cheese wrangling

Recursion on nested lists

Testing, big and small

Separation of concerns

Tour � TOAHModel �! ConsoleController

a relevant example

This is a job for recursion:

M (n) =

8<
:
1 n == 1

min
n
1 � i < n j 2�M (n � i) + 2i � 1

o
otherwise:

That's a recursive formula. Python has a built-in function min.

You probably want to combine (tuple?) the minimum number

of moves with the split (i) that produces it.

nesting depth of list

De�ne the nesting-depth of L as 1 plus the maximum nesting

depth of L's elements if L is a list, otherwise 0.

I the de�nition is almost exactly the Python code you write!

I start by writing return and pythonese for the de�nition:

return (1 + max([nested_depth(x) for x in L] + [0])

if isinstance(L, list) else 0)

I deal with the special case of a non-list

trace to understand recursion

Trace in increasing complexity; at each step �ll in values for

recursive calls that have (basically) already been traced

I Trace nested_depth([])

I Trace nested_depth(17)

I Trace nested_depth([3, 17, 1])

I Trace nested_depth([5, [3, 17, 1], [2, 4], 6])

I Trace

nested_depth([14, 7, [5, [3, 17, 1], [2, 4], 6], 9])

maximum number in nested list

Use the built-in max much like sum

I how would you �nd the max of non-nested list?

max(...)

I how would you build that list using a comprehension?

max([...])

I what would you do with list items that were themselves

lists?

max([rec_max(x) ...])

I get some intuition by tracing through
at lists, lists nested

one deep, then two deep. . .

trace the recursion

trace from simple to complex; �ll in already-solved recursive

calls

I trace rec_max([3, 5, 1, 3, 4, 7])

I trace rec_max([4, 2, [3, 5, 1, 3, 4, 7], 8])

I trace

rec_max([6, [4, 2, [3, 5, 1, 3, 4, 7], 8], 5])

get some turtles to draw

Spawn some turtles, point them in di�erent directions, get

them to draw a little and then spawn again...

Try out tree_burst.py

base case, general case

You will have noticed that a recursive function has a conditional

structure that speci�es how to combine recursive subcalls

(general case), and when/how to stop (the base case, or cases).

What happens if you leave out the base case?

before and after coding:

Test your docstring examples automatically:

if __name__ == ’__main__’:

import doctest

doctest.testmod()

For more thorough testing, use unittest

