CSC148 winter 2014

stools, names, tracing
week 5

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf .toronto.edu/~heap/148/F13/
416-978-5899

February 4, 2014

-
é Computer Science
UNIVERSITY OF TORONTO

Outline

prose to (recursive) code

memory model

tracing... or not

-
ﬁ Computer Science

UNIVERSITY OF TORONTO

=} =) = = z

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,
stool 1 to stool 3, we’d first think of a name and parameters.
We can start with move_cheeses(n, source, dest), meaning show
the moves from source stool to destination stool for n cheeses.

8 Computer Science
® unibersiTY oF TORONTO

stating that recursive insight:

The doodling on the previous slide breaks into a pattern, at
least for the 2- and 3-cheese case:

» move all but the bottom cheese from source to
intermediate stool (sounds recursive...)

» move the bottom cheese from the source to the destination
stool (sounds like the 1-cheese move)

» move all but the bottom cheese from the intermediate to
the destination stool (sounds recursive...)

The original problem repeats, except with different source,
destination, and intermediate stools!

New name: move_cheeses(n, source, intermediate, destination)

8 Computer Science
® unibersiTY oF TORONTO

write some code!

Fill in the three steps from the previous slide, using recursive
calls to move cheeses(...) with different values for the number of
cheeses, the source, destination, and intermediate stools, where
appropriate.

def move_cheeses(n: int, source: int, intermediate: int,
destination: int) -> None:
"""Print moves to get n cheeses from source
to destination, possibly using intermediate"""

if n > 1: # fill this in!

move_cheeses(?, ?, ?, ?)

move_cheeses(?, ?, ?, ?)

move_cheeses (7, ?, ?, ?)
else: # just 1 cheese —-—— leave this out for now!

-
3o ‘Computer Science
® unibersiTY oF TORONTO

complete that code!

Now, fill in what you do to move just one cheese — don’t use
any recursion! You will be returning a string that specifies you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,
destination: int) -> None:
"""Print moves to get n cheeses from source
to destination, possibly using intermediate"""
if n > 1: # fill this in!
move_cheeses(n - 1, source, destination, intermediate)
move_cheeses (1, source, intermediate, destination)
move_cheeses(n - 1, intermediate, source, destination)
else: # just 1 cheese ——— fill this in now!
return 7777

-
3o ‘Computer Science
® unibersiTY oF TORONTO

python gratification

Once you have your code entered into some Python
environment, you should run it with a few small values of n. As
usual, you can get more intuition about it by tracing examples,
working from small to larger n

8 Computer Science
® unibersiTY oF TORONTO

how much detail for developers?

Enough detail to predict results and efficiency of our code —
more detail than end users, less than compiler /interpreter

designers. In Python: &JA
o]

» Hvery name contains a

» Hvery value is a reference to the address of an object

8 Computer Science
6 UNIVERSITY OF TORONTO

searching for names

3 2

python looks, in order:

» innermost scope (function body, usually) local
enclosing scopes nonlocal
global (current module or __main__)

built-in names

vy v.v v

SE€ SCOpeESs and namespaces

-
8 Computer Science
® univeRsITY OF TORONTO

intense example

Try running python docs namespace example to check your
comfort level

-
é Computer Science
UNIVERSITY OF TORONTO

methods

The first parameter, conventionally called self, is a reference to
the instance:

>>> class Foo:
def f(self):
return "Hi world!"

>>> f1 = Foo()

Now Foo.f(fl) means f1.f()

8 Computer Science
® unibersiTY oF TORONTO

hunting for a method...

Start in the nearest subclass and work upwards, for example
visualize method

-
é Computer Science
UNIVERSITY OF TORONTO

don’t trace too far!

def rec_max(L):
mwan

Return the maximum number in possibly nested list of numbers.

>>> rec_max([17, 21, 0])

21

>>> rec_max([17, [21, 24], 0])

24

>>> rec_max([17, [21, 24], [18, 37, 16], 0])
37

i

return max([rec_max(x) if isinstance(x, list) else x for x in L])

Recommended:
» trace the simplest (non-recursive) case
» trace the next-most complext case, plug in known results

P> same as previous step...

+
8 Computer Science
®F vsibersiTy oF TorowTO

TMI tracing

In contrast to the step-by-step, plus abstraction (previous
slide), you could trace this in the visualizer

5 Computer Science
®F vsibersiTy oF TorowTO

