
CSC148 winter 2014
constant-time access,

review

week 12

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/W14/

416-978-5899

April 2, 2014

http://www.cdf.toronto.edu/~heap/148/W14/


Outline

constant time

ADTs

testing

recursion

exceptions

python idiom

big-oh



constant-time insert, �nd

trees maintain data in order, and (with certain constraints)

with lgn performance for inserting and �nding elements, but

Python dictionaries can insert, �nd in constant time | how?

a Python list has constant access, if the index is known, since

the references to elements are stored in consecutive memory

locations:



down-side of list

Python lists are accessed by index (an integer) | what about

other, more meaningful keys?

a string, or a tuple, can be converted into an integer, using hash

| not the same as id!



storage and collisions

once you have a way to convert objects to integers, you can

then convert those integers into indices in the appropriate range

| think %

how big a list do you need to hold your data? | the answer is

a bit surprising

suppose you had 365 \slots" | how soon would you expect a

collision?



dictionaries explained

a python dictionary:

I key ! integer

I integer ! list position

I collision ! linked list (chain) or probe the list



Abstract Data Type

I abstract: user doesn't want to know how it works

(implementation), but how to work it (public interface)

I data: record information

I type: structure encapsulates a concept that is common to

an entire set (type) of instances



use Python classes...

I classes implement your ADTs, to add to built-in ones like

str and Turtle.

I classes encapsulate data, and methods to operate on it,

that express an idea | they are plans for an ADT.

I developers can use (instantiate) existing classes without

knowing the details of how they work (implementation) |

an instance of a class is an actual object, a member of the

ADT the class de�nes.

I developers can recycle existing class de�nitions, extending

and modifying them through inheritance.



ADT example: stacks...

computer stacks have the same strengths and weaknesses as the

stacks they imitate in the physical world: sequences of items

with easy storage and retrieval from the top; retrieval from

other positions in the stack, not so much.

Data: sequence of items

Operations: push(item), pop(), is empty



inheritance

Classes allow you to recycle existing code by

I Composition: create a new class that includes an instance

of an old class, for example there's an instance of list in one

of our stack implementations.

I Inheritance: Modify or extend an old class by creating a

subclass that inherits some features, extends or modi�es

others.

I In poly.py and special poly.py I use all approaches:

composition to include a Turtle instance, extending the

init method of Polygon in SpecialPolygon, replacement of

Polygon's draw method in SpecialPolygon, and inheritance of

get param. Use the debugger for intuition.

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W12/poly.py
http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W12/special_poly.py


testing

Use your docstring for testing as you develop, but use unit

testing to make sure that your particular implementation

remains consistent with your ADT's interface. Be sure to:

I import the module unittest

I subclass unittest.Testcase for your tests, and begin each

method that carries out a test with the string test

I compose tests before and during implementation

http://docs.python.org/3.3/library/unittest.html
http://docs.python.org/3.3/library/unittest.html
http://www.cdf.toronto.edu/~heap/148/F13/Lectures/W2/teststack.py


using exceptions

You can use Exception, and its subclasses in several ways

I If execution stops with an Exception, read the message and

reason about the cause.

I You can de�ne a subclass of Exception (or one of

Exception's subclasses) with a more meaningful name, and

write code to raise your exception when you detect a

problem.

I You can use try. . . except pairs to try to execute code, but

then execute alternate code under exceptional

circumstances.



going with the (pep) tide

Python is more 
exible than the community you are coding in.

Try to �gure out what the python way is

I don't re-invent the wheel (except for academic exercises),

e.g. sum, max, set, any, all

I use comprehensions when you mean to produce a new list

(tuple, dictionary, set, . . . )

I use ternary if when you want an expression that evalutes

in di�erent ways, depending on a condition

http://python.net/~goodger/projects/pycon/2007/idiomatic/presentation.html


running time analysis

algorithm's behaviour over large input (size n) is common way

to compare performance | how does performance vary as n

changes?

constant: c 2 R+ (some positive number)

logarithmic: c logn

linear: cn (probably not the same c)

quadratic: cn2

cubic: cn3

exponential: c2n

horrible: cnn or cn !



Running Time Analysis

� An algorithm is O(g(n)) if any reasonable implementation 
of the algorithm on any reasonable computer would 
require O(g(n)) time to solve a large problem of size n.require O(g(n)) time to solve a large problem of size n.

Time
f(n) = 7n 2

h(n) = 4n + 2

g(n) = 12

n

k(n) = 2n 2 + 1



problems that resemble their parts

Suppose n is a non-negative integer stored in your computer,

and you'd like to represent n as a decimal (base 10) string.

After all, Python has to do something like this with integers

that are stored in hardware in binary.

The problem can be broken down into how to get the units

digit (use the % operator), and how to get everything but the

units digit (use the / operator). Now concatenate the string

representing the units digit to the string representing

everything but the units digit.

The second part of the solution sounds like a smaller instance

of the original problem. Use recursion | call the function itself

within its own de�nition.



recursion, natural and otherwise

http://en.wikipedia.org/wiki/File:Fractal_Broccoli.jpg
http://en.wikipedia.org/wiki/File:Binary_tree.svg


terminology

I set of nodes (possibly with values or labels), with directed edges

between some pairs of nodes

I One node is distinguished as root

I Each non-root node has exactly one parent.

I A path is a sequence of nodes n1;n2; : : : ;nk , where there is an

edge from ni to ni+1. The length of a path is the number of

edges in it

I There is a unique path from the root to each node. In the case of

the root itself this is just n1, if the root is node n1.

I There are no cycles | no paths that form loops.



more terminology

I leaf: node with no children

I internal node: node with one or more children

I subtree: tree formed by any tree node together with its

descendants and the edges leading to them.

I height: Maximum path length in a tree. A node also de�nes a

height, which is the maximum path length of the tree rooted at

that node

I arity, branching factor: maximum number of children for any node.



linear trees?

Trees of arity (branching factor) 1 can be thought of as a

sequence of lists. Every node has no more than one child, and

every node (other than the lone leaf) has no less than one child.



linked lists, conceptually

I data: Sequence of nodes, each with a head (value) and a

reference to rest (its successors).

I operations: prepend(value), contains (value)

http://en.wikipedia.org/wiki/File:Singly-linked-list.svg


binary search tree

I A binary tree

I left subtree of each node contains elements with values less

than that node

I right subtree of each node contains elements with values

more than that node

http://en.wikipedia.org/wiki/File:Binary_search_tree.svg


tree surgery

Standard operations such as find(data), insert(data), height(), and

delete(data) can be made e�cient in a BST, due to the order

property. Since each of insert and delete may alter the root of

the tree, it makes sense to have them return a reference to the

root.

http://en.wikipedia.org/wiki/File:Binary_search_tree.svg


quick sort performance

I how many times do we choose the pivot?

I how many steps each time we choose a pivot?



merge sort

idea: divide the list in half, (merge) sort the halves, then merge

the sorted results



merge sort performance

I how many times do we split the list in half?

I how many steps each time we split?



scaling:

How well do these various sorts perform as the size of the

problem (list length) increases? Time and compare.



TAs...

Tuesday, 9{11: Madina, Larry (BA3175) Brian (BA3185) Sagun (BA3195)

Tuesday 11{1: Abayomi (BA3175) Tong (BA3185) Sunny (BA3195)

Tuesday 1{3: Shobhit (BA3175) Abdi (BA3185) Shems (BA3195)

Wednesday 11-1: Sam (BA3175) Hazem (BA3185) Amirali (BA3195)

Wednesday 1{3: Nahla (BA3175) Jake (BA3185) Carter (BA3195)

Wednesday 3{5: Olessia (BA3175) Madina, Lin (BA3185) Cheng (BA3195)

Tuesday 7{9: Younan (BA3175) Yanshuai (BA3185)

Wednesday 7{9: Michalis (BA3175)


	constant time
	ADTs
	testing
	recursion
	exceptions
	python idiom
	big-oh

