
CSC148, Lab #8

week of March 10th, 2014

This document contains the instructions for lab number 8 in CSC148H1. To earn your lab mark, you must

actively participate in the lab. We mark you in order to ensure a serious attempt at learning, not to make

careful critical judgments on the results of your work. We will use the same general rules as for the �rst lab

(including pair programming). See the instructions at the beginning of Lab 1 to refresh your memory.

step 0: binary search trees (BSTs)

getting started

� Agree on who will be student s1 and who will be student s2 for this lab.

� Read through the entire handout for this lab quickly, so that you have an idea what you will have to

do.

� Download the �les BSTTester.py, BST rec1.py, BST rec2.py, BST rec3.py, and BST iter.py, and read

through all of them quickly.

When you are done, get ready to begin pair programming. You should work on steps 1{3. Only work on

step 4 if you have time. For each step you will need to:

� Open the appropriate �le BST rec?.py in Wing. Depending on which BST rec?.py you work on, you will

need to change the beginning of BSTTester.py to import that version.

� Read through the code in the �le carefully and run BSTTester.py to see the results. The results are

somewhat graphical, so you should calculate by hand the expected outputs of count less. Con�rm your

hand results with your TA before proceeding.

Make sure you ask questions if there is anything in the code that you don't understand. Do this before

you try to write any of your own code.

� Before you move from one step to the next, think about the following questions. Do you understand

what you just did? Can you describe how your code works and explain why it does the right thing?

Or did you manage to get working code by trial-and-error, without really understanding how it works?

� It's OK if you don't fully understand how your code works for now, but keep in mind that you must

ask questions (of your partner, of other students, of your TA) to ensure that you do understand by

the end of your lab.

� When you are done, run BSTTester.py again to verify your results.

� When you are done, show your work to your TA and switch roles.

1

http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/handout.pdf
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab08/BSTTester.py
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab08/BST_rec1.py
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab08/BST_rec2.py
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab08/BST_rec3.py
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab08/BST_iter.py


step 1: recursive function

(Student s1 drives and student s2 navigates.)

� Implement method count less in class BST in �le BST rec1.py. For this part, you must do this by writing

a nested helper function within count less, and then calling your helper within count less. You are not

allowed to add any method to class BSTNode for this part.

Look over some the existing code in BST rec1.py for inspiration.

step 2: recursive method

(Student s2 drives and student s1 navigates.)

� Implement method count less in class BST in �le BST rec2.py. For this part, you must do this by writing

a helper method in class BSTNode and calling the helper within count less. You are not allowed to add

any method to class BST for this part.

step 3: recursive method without None

(Student s1 drives and student s2 navigates.)

� Implement method count less in class BST in �le BST rec3.py. For this part, you must do this by writing

a helper method in classes BSTNode and BSTNone and calling the helper within count less. You are

not allowed to add any method to class BST for this part. Notice that the only di�erence between

step 3 and step 2 is how None is handled | there is no None (so to speak), but there is a subclass of

BSTNode called BSTNone that does the work of None.

step 4: iteratively (with looping):

(Student s2 drives and student s1 navigates.)

� Take the time to review your code from the previous three parts. Compare what you have done with

the way that methods str and insert were implemented, and discuss the following topics with your

partner:

– Now is the time to ask any last question you have, to make sure that you fully understand how

your code works.

– Once you understand all your code, and it all works, think about this: are there ways that you

could simplify? (For example, perhaps you have extra base cases that are not necessary because

your general case already does the right thing).

– Discuss which recursive technique you �nd easiest to implement. Which one gives the simplest

code at the end? Remember that one important goal of programming is to make your programs

as easy to understand as possible: both for yourself, and for other readers of your code. So it is

always a good use of your time to review code after you have written it, in order to clean it up:

simplify where you can, remove redundancies, etc.

� Warning! The rest of this lab is challenging! It's OK if you don't �nish the rest, but you should de�nitely

think about it and get as far into it as you can. It is provided to make you realize that recursion is your

friend, i.e. a very useful technique that can save you a lot of trouble | this is why it is so important

for you to learn it!

2



� Open BST iter.py in Wing and change BSTTester.py so that it imports from BST iter.py (near the top).

� Read through the code in BST iter.py carefully and run BSTTester.py to see the results. Make sure you

ask questions if there is anything in the code that you don't understand. Do this before you try to

write any of your own code.

� Implement method count less in class BST in �le BST iter.py. For this part, you must do this without

any form of recursion! But you are allowed to use a separate data structure to manage information. . .

� When you are done, run BSTTester.py to verify your results.

If you manage to get this done, show your work to your TA. Then, please stick around to help other students

in your lab section!

3


