
CSC148, Lab #5

week of February 10th, 2014

This document contains the instructions for lab number 5 in CSC148H1. To earn your lab mark, you must

actively participate in the lab. We mark you in order to ensure a serious attempt at learning, NOT to make

careful critical judgments on the results of your work.

General rules

We will use the same general rules as for the �rst lab (including pair programming). See the instructions at

the beginning of Lab 1 to refresh your memory.

Overview

In this lab you will learn, and reason about, some python idioms, as well as develop some unit testing skills.

Comprehensions, zip, and filter capture logical patterns that are often used by programmers, and pro-

vide an occasionally-more-readable and internally-optimized form for them, see Python tips on loops, and

Goodger on comprehensions, �lter documentation, and Python zip documentation. These forms make a

programmer's intention clear | that they are intendeding to produce a new list or iterable from an old

one. In this lab, you will re-implement some functions written using comprehensions and filter to use loops

instead, and verify that you have consistent implementations using unit tests.

Vector and matrix operations

(Student s1 drives, student s2 navigates)

Vectors can be represented as python lists of numbers. You may have encountered them, but in any case

they support some operations peculiar to themselves.

dot product

One such operation is the dot-product | a way of multiplying two vectors to get a single number (rather

than a list of numbers). Here's an example, where the symbol � represents the dot-product operation:

[1; 2; 3] � [4; 5; 6] = (1� 4) + (2� 5) + (3� 6) = 4 + 10 + 18 = 32

Basically, we multiply the corresponding elements of the two vectors together, and then sum those products.

Your �rst task is to read the de�nition of dot prod() in comprehension.py. You may also look over Python

tips on loops, tuple unpacking, and zip to see how this solution works.

1

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab01/handout.pdf
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#list-comprehensions
http://docs.python.org/3.3/library/functions.html#filter
http://docs.python.org/3.3/library/functions.html#zip
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab05/comprehension.py
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
https://wiki.python.org/moin/PythonSpeed/PerformanceTips#Loops
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#swap-values
http://docs.python.org/3.3/library/functions.html#zip

Now, re-implement this function (write your own implementation) in a new �le called loop.py without

using a list comprehension. Use exactly the same function name and parameters, just change the body.

Your basic approach will be:

1. create an empty list (if you're producing a list), or a variable initially set to 0

2. loop over the iterables (lists in this case) provided

3. inside the list, update your list or variable

4. when you're done, return your list or variable

Also, in a new �le called tester.py, create new test cases in the TestCase DotProductTester. Increase your

con�dence that your implementation of dot prod(), as well as the one in comprehension.py, pass appropriate

tests. To get an idea of what tests you should consider, review Choosing test cases. You should strive to

test one case at a time with small test... methods, rather than lumping all your tests together.

If you're stuck, talk to your TA. If you're not stuck, show your TA your work.

matrix-vector product

Another operation multiplies a matrix M | essentially a list of vectors | times a vector v, resulting in a new

vector. The idea is to take the dot-product of each vector in the matrix with the vector you are multiplying

it with to yield the corresponding entry in the new vector. An example should make this more concrete

(here we indicate the matrix-vector product by �)

[[1; 2]; [3; 4]]� [5; 6] = [[1; 2] � [5; 6]; [3; 4] � [5; 6]] = [17; 39]

Notice that we recycle the dot product in order to implement the matrix vector product.

Again, your �rst task is to read the de�nition of matrix vector prod() in comprehension.py. . Then re-

implement matrix vector prod() in the �le loop.py, using a loop or loops, rather than a comprehension. You

should certainly use dot prod() in your implementation. Once you are done, create some new test cases in the

TestCase MatrixVectorProductTester in the �le tester.py. Increase your con�dence that both implementations

pass appropriate tests.

If you're stuck, talk to your TA. If you're not stuck, show your TA your work.

Pythagorean triples

List comprehensions aren't just limited to iterating over a single iterable. Try out the following example:

[(i, j, k) for i in range(3) for j in range(3) for k in range(3)]

Pythagorean triples are triples of integers (x; y; z) where x
2 + y

2 = z
2 (representing the sides of special

right-angle triangles). These can be discovered analytically, but why not let a computer do the work?

Read over the implementation of pythagorean triples() in comprehension.py. You may �rst want to read

documentation for �lter. Once you're done, re-implement pythagorean triples() in the �le loop.py, using (of

course!) neither comprehensions nor the built-in filter function. Add test methods to the TestCase Pythagore-

anTripleTester, to increase your con�dence that both implementations pass appropriate tests.

If you get stuck, call over your TA. If you don't get stuck, show your completed work to your TA.

2

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/ChoosingTestCases.html
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab05/comprehension.py
http://docs.python.org/3.3/library/functions.html#filter

any and all

(Student s1 drives, student s2 navigates)

Sometimes we want to apply a boolean function to a list | do any list elements satisfy a given condition,

or do all list elements satisfy a given condition.

Read over the implementation of any pythagorean triples() in comprehension.py. You may �rst want to look

over the documentation for all, any, as well as generator comprehensions. Once you're done, re-implement

any pythagorean triples() in loop.py, without using a comprehensions, any, all, filter(), or pythagorean triples().

Then add test methods to the TestCase AnyPythagoreanTripleTester, to increase your con�dence that both

implementations pass the appropriate tests.

If you get stuck, talk to your TA. If you don't get stuck, also talk to your TA.

3

http://docs.python.org/3.3/library/functions.html#all
http://stackoverflow.com/questions/364802/generator-comprehension

