
CSC148, Assignment #2

Regular expressions

due March 6th and 20th, 2014

February 26, 2014

introduction

Regular expressions (abbreviated to regex, the pronunciation of which gives rise to endless ame wars. . .)

are used in various programming languages and utilities to match entire classes of strings. This assignment

will give you experience modelling a regular expression as a tree, and detecting which strings match a given

regular expression.

We won't favour any particular regex language or utility, such as Python, Java, or Linux's grep, but use

a stripped-down simpli�ed regular expression form that contains all the essential principles. In particular,

you are not permitted to import Python's regular expression module re into any �le you submit.

We'll only be dealing with a ternary alphabet, i.e., f0; 1; 2g. Generalizing to an arbitrary alphabet is

straightforward, but doesn't buy us much for the purpose of this assignment. The elementary regex symbols

we'll use can be easily typed in Python source code. A regex (over ternary alphabet f0; 1; 2g) is a nonempty

string made up of the following symbols.

’0’ called zero

’1’ one

’2’ two

’e’ pronounced \ee" or \epsilon"

’|’ bar

’.’ dot

’*’ star

’(’ left parenthesis, or left

’)’ right parenthesis, or right

There are several rules determining that a string made up of these symbols is a valid regular expression:

1. There are 4 regexes of length one. They are:

� ’0’

� ’1’

1

http://docs.python.org/3.3/howto/regex.html
http://www.tutorialspoint.com/java/java_regular_expressions.htm
https://help.ubuntu.com/community/grep

� ’2’

� ’e’

2. If r is a regular expression, then so is r + ’*’, where the plus symbol '+' means string concatenation,

as in Python.

3. If r1 and r2 are regexes, then so are:

� ’(’ + r1 + ’|’ + r2 + ’)’

� ’(’ + r1 + ’.’ + r2 + ’)’

Here are some examples of regexes:

� ’0’

� ’1’

� ’2’

� ’e’

� ’0*’

� ’1*’

� ’2*’

� ’e*’

� ’(0|1)’

� ’(1.2)’

� ’(e|0)’

� ’(2.e)’

� ’(0*|2*)’

� ’((0.1).2)’

� ’((1.(0|2)*).0)’

tree representation of regexes

Every regex can be (uniquely) represented as a tree. Each leaf node contains exactly one of ’0’, ’1’, ’2’,

or ’e’. Each internal node contains exactly one of ’.’, ’|’, or ’*’.

A regex of length one is represented by a tree of one node containing the symbol in the regex. For

example, the regex '0' is represented by the tree whose root is the leaf node containing '0'.

A regex of the form r + ’*’ is represented by a tree whose root node contains ’*’, and that node has

one child which is the tree that represents the regex r. E.g., the regex ’1*’ is represented by the following

tree:

2

’1’

’*’

A regex of the form ’(’ + r1 + ’|’ + r2 + ’)’ is represented by a tree whose root node contains ’|’, and

that node has left and right children which are the trees that represent the regexes r1 and r2 respectively.

For example, the regex ’(0|1)’ is represented by the following tree:

’0’ ’1’

�� SS

’|’

A regex of the form ’(’ + r1 + ’.’ + r2 + ’)’ is represented just as a regex of the form ’(’ + r1 +

’|’ + r2 + ’)’, except the root now contains ’.’ rather than ’|’. For example, the regex ’((0.1).0)’

is represented by the following tree:

’0’ ’1’

�� SS

’.’ ’0’

�
�
QQQ

’.’

Here's an example that combines all concepts from above. The regex ’((1.(0|1)*).0)’ is represented by

the following tree:

’1’

’0’ ’1’

�
�
S
S

’|’

’*’

���
S
S

’.’ ’0’

��
HHHH

’.’

matching strings with regexes

A ternary string is a string (possibly empty) that contains only the symbols ’0’, ’1’ and ’2’. For a regex

r and a ternary string s, we de�ne below what it means for r to match s. (Equivalently we may also say

that s matches r, or that r and s match).

1. A regex of length one matches exactly one string. Speci�cally:

� the regex ’0’ matches the string ’0’

� the regex ’1’ matches the string ’1’

� the regex ’2’ matches the string ’2’

� the regex ’e’ matches the string ’’ (i.e., ’e’ matches the empty string)

3

2. A regex of the form r + ’*’ matches string s if and only if either

(a) s equals ’’ (empty string), or

(b) s has the form s1 + s2 + � � �+ sk where k > 0 and r matches every si

For example, the regex ’0*’ matches any string (possibly empty) that contains no other symbols than

the symbol ’0’

3. A regex of the form ’(’ + r1 + ’|’ + r2 + ’)’ matches string s if and only if:

(a) r1 matches s, or

(b) r2 matches s, or

(c) both of the above

For example, the regex ’(2|0*)’ matches the string ’2’ as well as any string that contains only the

symbol ’0’

4. A regex of the form ’(’ + r1 + ’.’ + r2 + ’)’ matches a string s if and only if there are two

strings s1 and s2 (each possibly empty) such that

(a) s is the concatenation of s1 and s2 (i.e., s equals s1 + s2), and

(b) r1 matches s1, and

(c) r2 matches s2.

For example, the regex ’(1*.2)’ matches any string that contains zero or more ’1’s, followed by

exactly one ’2’.

Here's an example that combines all concepts from above. The regex ’((1.(0|1)*).2)’ matches any string

that starts with ’1’ and ends with ’2’, and has any number of ’0’s and ’1’s in between (including nothing

in between).

your job

You may work with up to two other students currently in CSC148 | in other words, a group of 1 to 3

people. Your tasks come in two stages

Stage 1, due March 6th at 10:00 p.m.: Design a collection of classes to represent the various sorts of regular

expression trees. Each class should implement or inherit an __eq__ method so that it can be compared

to other objects; and a __repr__ method so that it can be represented in a meaningful way as a string,

and so that an equivalent tree will be produced if you cut-and-paste the representation into a Python

shell. You should carefully consider how to use inheritance to reduce the amount of duplicated code.

You should also ensure that public attributes for a tree's symbol or children can only be set once,

during initialization. After that, they should be read-only.

Your class(es) should be declared in a �le called regex design.py, which should be submitted on MarkUs

by 10 p.m. on March 6th. Of course, all your classes and methods should have good documentation.

Stage 1 is worth 40% of Assignment 2.

Stage 2, due March 20th at 10:00 p.m.: You should:

4

https://markus.cdf.toronto.edu/csc148-2014-01/
http://www.cdf.toronto.edu/~csc108h/fall/assignments/a3/rules.html

1. Download regextree.py and regex functions.py (these will be available shortly after March 6th).

Add your name(s) to the license at the top of regex functions.py, indicating that you have added

intellectual value to it. However, do not add any import statements, or change the import

statement, in regex functions.py. You may only distribute the �les, or modi�ed versions of them,

with the same license, and along with the �le COPYING

2. In regex functions.py implement the following module-level functions, as usual with good documen-

tation:

is regex(s): which takes a string s and produces True if it is a valid regular expression (according

to the characterization in the introduction of this handout), but False otherwise.

all regex permutations(s): which takes a string s and produces the set of permutations of s that are

also valid regular expressions (according to the characterization in the introduction of this

handout)

regex match(r, s): which returns True if and only if string s matches the regular expression tree

rooted at r.

build regex tree(regex): which takes a valid regular expression regex, builds the corresponding reg-

ular expression tree, and returns its root.

3. Submit regex functions.py on MarkUs by 10 p.m. on March 20th.

Stage 2 is worth 60% of Assignment 2.

5

http://www.cdf.toronto.edu/~heap/148/W14/Assignments/A2/regextree.py
http://www.cdf.toronto.edu/~heap/148/W14/Assignments/A2/regex_functions.py
http://www.cdf.toronto.edu/~heap/148/W14/Assignments/A2/COPYING
http://www.cdf.toronto.edu/~csc108h/fall/assignments/a3/rules.html
http://www.cdf.toronto.edu/~csc108h/fall/assignments/a3/rules.html
http://en.wikipedia.org/wiki/Permutation
https://markus.cdf.toronto.edu/csc148-2014-01/

