
CSC148 fall 2013
sorting big-oh

week 9

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

November 6, 2013



Outline

more big-oh



running time analysis

algorithm's behaviour over large input (size n) is common way

to compare performance

constant: c 2 R+ (some positive number)

logarithmic: c logn

linear: cn (probably not the same c)

quadratic: cn2

cubic: cn3

exponential: c2n

horrible: cnn or cn !



case: lgn

this is the number of times you can divide n in half before

reaching 1.

I refresher: ab = c means loga c = b.

I this runtime behaviour often occurs when we \divide and

conquer" a problem (e.g. binary search)

I we usually assume lgn (log base 2), but the di�erence is

only a constant:

2log2 n = n = 10log10n =) log2 n = log2 10� log10 n

I so we just say O(lgn).



hierarchy

Since big-oh is an upper-bound the various classes �t into a

hierarchy:

O(1) � O(lgn) � O(n) � O(n2) � O(n3) � O(2n) � O(nn)



selection sort (review?)

idea: for each position in the list, select the minimum item

from that position on



merge sort

idea: divide the list in half, (merge) sort the halves, then merge

the sorted results



quick sort

idea: choose a pivot; decide where the pivot goes with respect

to the rest of the list, repeat on the partitions...


