
CSC148 fall 2013

binary search tree

week 8

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

October 29, 2013



Outline

performance

binary search tree

big-oh



performance. . .

We want to measure algorithm performance, independent of

hardware, programming language, random events

Focus on the size of the input, call it n . How does this a�ect

the resources (e.g. processor time) required for the output? If

the relationship is linear, our algorithm's complexity is O(n) |

roughy proportional to the input size n .



list searching

You've already seen algorithms for seeing whether an element is

contained in a list:

[97, 36, 48, 73, 156, 947, 56, 236]

What is the performance of these algorithms in terms of list

size? What about the analogous algorithm for a tree?



a more e�cient binary tree

We need to impose a sorting condition on binary trees. A binary

search tree is:

I a binary tree

I left subtree of every node contains only values smaller than

those of that node

I right subtree of every node contains only values greater

than those of that node



e�ciency?

Binary search of a list allowed us to ignore (roughly) half the

list. Searching a binary search tree allows us to ignore the left

or right subtree.

If we're searching the tree rooted at node n for value v , then

one of three situations are possible:

I node n has value v

I v is less than node n 's value, so we should search to the left

I v is more than node n 's value, so we should search to the

right



insert

Inserting is closely related to �nding a node:

I if we �nd a node in our tree, no need to insert it!

I otherwise, we �nd the spot it should be, and insert it there.



deleting

deleting is a bit trickier, because there are several scenarios to

consider, even after we've �gured out which node we wish to

delete:

I if the node we wish to delete is a leaf, just delete it

I if the node we wish to delete has exactly one child, replace

it with the other

I if the node we wish to delete has two children, replace it

with the largest child in its left subtree. . .

You should draw some diagrams until you understand these

scenarios



running time analysis

algorithm's behaviour over large input (size n) is common way

to compare performance

constant: c 2 R+ (some positive number)

logarithmic: c logn

linear: cn (probably not hte same c)

quadratic: cn2

cubic: cn3

exponential: c2n

horrible: cnn or cn !



running time analysis

abstract away di�erence between similar worst-case

performance, e.g.

I one algorithm runs in (0:3365n2 + 0:17n + 0:32)�s

I another algorithm runs in (0:47n2 + 0:08n)�s

I in both cases doubling n quadruples the run time. We say

both algorithms are O(n2) or \order n2" or

\oh-n-squared" behaviour.



asymptotics

If any reasonable implementation of an algorithm, on any

reasonable computer, runs in time no more than cg(n) (some

constant c), we say the algorithm is O(g(n)). Graphing various

examples where g(n) = n2 shows how we ignore the c as n gets

large (say 7n2
; 2n2 + 1 versus 4n + 2;n = 12).



case: lgn

this is the number of times you can divide n in half before

reaching 1.

I refresher: ab = c means loga c = b.

I this runtime behaviour often occurs when we \divide and

conquer" a problem (e.g. binary search)

I we usually assume lgn (log base 2), but the di�erence is

only a constant:

2log2 n = n = 10log10n =) log2 n = log2 10� log10 n

I so we just say O(lgn).



hierarchy

Since big-oh is an upper-bound the various classes �t into a

hierarchy:

O(1) � O(lgn) � O(n) � O(n2) � O(n3) � O(2n) � O(nn)


