
CSC148 fall 2013

binary search tree

week 8

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

October 29, 2013



Outline

performance

binary search tree

big-oh



performance. . .

We want to measure algorithm performance, independent of

hardware, programming language, random events

Focus on the size of the input, call it n . How does this a�ect

the resources (e.g. processor time) required for the output? If

the relationship is linear, our algorithm's complexity is O(n) |

roughy proportional to the input size n .



list searching

You've already seen algorithms for seeing whether an element is

contained in a list:

[97, 36, 48, 73, 156, 947, 56, 236]

What is the performance of these algorithms in terms of list

size? What about the analogous algorithm for a tree?



a more e�cient binary tree

We need to impose a sorting condition on binary trees. A binary

search tree is:

I a binary tree

I left subtree of every node contains only values smaller than

those of that node

I right subtree of every node contains only values greater

than those of that node



e�ciency?

Binary search of a list allowed us to ignore (roughly) half the

list. Searching a binary search tree allows us to ignore the left

or right subtree.

If we're searching the tree rooted at node n for value v , then

one of three situations are possible:

I node n has value v

I v is less than node n 's value, so we should search to the left

I v is more than node n 's value, so we should search to the

right



insert

Inserting is closely related to �nding a node:

I if we �nd a node in our tree, no need to insert it!

I otherwise, we �nd the spot it should be, and insert it there.



deleting

deleting is a bit trickier, because there are several scenarios to

consider, even after we've �gured out which node we wish to

delete:

I if the node we wish to delete is a leaf, just delete it

I if the node we wish to delete has exactly one child, replace

it with the other

I if the node we wish to delete has two children, replace it

with the largest child in its left subtree. . .

You should draw some diagrams until you understand these

scenarios



deleting

deleting is a bit trickier, because there are several scenarios to

consider, even after we've �gured out which node we wish to

delete:

I if the node we wish to delete is a leaf, just delete it

I if the node we wish to delete has exactly one child, replace

it with the other

I if the node we wish to delete has two children, replace it

with the largest child in its left subtree. . .

You should draw some diagrams until you understand these

scenarios



deleting

deleting is a bit trickier, because there are several scenarios to

consider, even after we've �gured out which node we wish to

delete:

I if the node we wish to delete is a leaf, just delete it

I if the node we wish to delete has exactly one child, replace

it with the other

I if the node we wish to delete has two children, replace it

with the largest child in its left subtree. . .

You should draw some diagrams until you understand these

scenarios



deleting

deleting is a bit trickier, because there are several scenarios to

consider, even after we've �gured out which node we wish to

delete:

I if the node we wish to delete is a leaf, just delete it

I if the node we wish to delete has exactly one child, replace

it with the other

I if the node we wish to delete has two children, replace it

with the largest child in its left subtree. . .

You should draw some diagrams until you understand these

scenarios


