
CSC148 fall 2013
abstraction and idiom

week 2

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

September 18, 2013



Outline

abstract data types (ADTs)

implement an ADT with a class

idiomatic python



common ADTs

In CS we recycle our intuition about the outside world as

ADTs. We abstract the data and operations

I sequences of items; can be added, removed, accessed

by position

I specialized list where we only have access to most

recently added item

I collection of items accessed by their associated keys



stack example

visit this visualization of code and step through it

The calls to first and second are stored on a stack that de�es

gravity by growing downward



stack class design

We'll use this real-world description of a stack for our design:

A stack contains items of various sorts. New items

are pushed on to the top of the stack, items may

only be popped from the top of the stack. It's a

mistake to try to remove an item from an empty

stack. We can tell how big a stack is, and what the

top item is.

Take a few minutes to identify the main noun, verb, and

attributes of the main noun, to guide our class design.

Remember to be exible about alternate names and designs for

the same class



implementation possibilities

The public interface of our Stack ADT should be constant, but

inside we could implement it in various ways

I Use a python list, which already has a pop method and an

append method

I Use a python list, but push and pop from position 0

I Use a python dictionary with integer keys 0, 1, . . . , keeping

track of the last index used



testing

Use your docstring for testing as you develop, but use unit

testing to make sure that your particular implementation

remains consistent with your ADT's interface. Be sure to:

I import the module unittest

I subclass unittest.Testcase for your tests, and begin each

method that carries out a test with the string test

I compose tests before and during implementation



going with the (pep) tide

Python is more exible than the community you are coding in.

Try to �gure out what the python way is

I don't re-invent the wheel (except for academic exercises),

e.g. sum, set

I use comprehensions when you mean to produce a new list

(tuple, dictionary, set, . . . )

I use ternary iff when you want an expression that evalutes

in di�erent ways, depending on a condition


