
CSC148 fall 2013

names, tracing, abstraction recursion

week 12

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

November 28, 2013



Outline

memory model

tracing... or not

consequences of recursion



how much detail for developers?

Enough detail to predict results and e�ciency of our code |

more detail than end users, less than compiler/interpreter

designers. In Python:

I Every name contains a value

I Every value is a reference to the address of an object



searching for names

python looks, in order:

I innermost scope (function body, usually) local

I enclosing scopes nonlocal

I global (current module or __main__)

I built-in names

I see scopes and namespaces



intense example

Try running python docs namespace example to check your

comfort level



methods

The �rst parameter, conventionally called self, is a reference to

the instance:

>>> class Foo:

... def f(self):

... return "Hi world!"

...

>>> f1 = Foo()

Now Foo.f(f1) means f1.f()



hunting for a method...

Start in the nearest subclass and work upwards, for example

visualize method



don't trace too far!

def rec_max(L):

"""

Return the maximum number in possibly nested list of numbers.

>>> rec_max([17, 21, 0])

21

>>> rec_max([17, [21, 24], 0])

24

>>> rec_max([17, [21, 24], [18, 37, 16], 0])

37

"""

return max([rec_max(x) if isinstance(x, list) else x for x in L])

Recommended:

I trace the simplest (non-recursive) case

I trace the next-most complext case, plug in known results

I same as previous step...



TMI tracing

In contrast to the step-by-step, plus abstraction (previous

slide), you could trace this in the visualizer



TMI tracing

In contrast to the step-by-step, plus abstraction (previous

slide), you could trace this in the visualizer


