
CSC148 fall 2013

identity, information hiding, reduce

week 11

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

November 20, 2013

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

hiding attributes

equality

reduce

why not hidden by default?

The Python approach is to start with easy-to-access attributes, and only

worry about restricting them when it becomes an issue:

class RegexTreeNode:

"""A Regex Tree node"""

def __init__(self: ’RegexTreeNode’, symbol: str,

children: list) -> None:

"""A new RegexTreeNode with regex symbol and subtrees children.

REQ: symbol must be one of "0", "1", "e", "|", ".", "*"

>>> print(RegexTreeNode("0", []))

RegexTreeNode(’0’, [])

>>> print(RegexTreeNode("1", []))

RegexTreeNode(’1’, [])

"""

self.symbol = symbol

self.children = children[:]

easy-to-use versus managed attributes

Python attributes are easy to use, but over time we may re�ne

the implementation. Without changing the interface, how can

you change the data structure representing an attribute, or use

some computation in getting or setting it?

For example, what if we wanted to enforce RegexNode symbol

being one of '1', '0', 'e', '.', '|', or '*'?

properties

built-in function property gives us nuanced access:

def get_symbol(self: ’RegexTreeNode’) -> object:

"""get private symbol."""

return self._symbol

def set_symbol(self: ’RegexTreeNode’, s: str) -> None:

"""set private symbol"""

if not s in ’01e|.*’:

raise Exception(’Invalid symbol: {}’.format(s))

else:

self._symbol = s

symbol = property(get_symbol, set_symbol, None, None)

http://docs.python.org/3.3/library/functions.html#property

read-only

We could also make RegexTreeNode children read-only:

def get_children(self: ’RegexTreeNode’) -> list:

"""get private children"""

return self._children

children = property(get_children, None, None, None)

when are objects equal?

The default behaviour of == is to report whether two objects

are the same. . . object!

Sometimes we want to know whether they are equivalent, and

we have various notions of equivalence.

Customize with __eq__

equivalent RegexTreeNodes

We really want to check whether they have the same symbol and the same

children:

def __eq__(self: ’RegexTreeNode’, other: ’RegexTreeNode’) -> bool:

"""is this RTN equivalent to other?"""

return (self.symbol == other.symbol and

all([c1.__eq__(c2)

for c1, c2 in zip(self.children,other.children)]))

bundle up an iterable

Google has said they could never spread operations over many

servers without MapReduce

You already have the idea of map | it's very similar to list

comprehensions, although Python also has map

Reduce allows you to combine the elements of an iterable into a

single, somehow reduced, value.

long multiplication?

Suppose you want to multiply all the numbers in a list:

from functools import reduce

reduce(int.__mul__, [1, 2, 3, 4, 5])

what functions can reduce?

Functions that take two arguments of the same type, and

return a value of the same type. Reduce the iterable, pairwise,

to one value.

def my_add(x, y):

return x + y

def my_sum(L: ’iterable of addables...’) -> object:

return reduce(my_add, L, 0)

(((((0 + L[0]) + L[1]) + L[2]) + L[3]) + L[4]) ...

special cases: sum, max, min

	hiding attributes
	equality
	reduce

