
CSC148, Lab #9

week of November 18th, 2013

This document contains the instructions for lab #9 in CSC148. To earn your lab mark, you must actively

participate in the lab. We mark you in order to ensure a serious attempt at learning, NOT to make careful

critical judgments on the results of your work.

general rules

We will use the same general rules as for the �rst lab (including pair programming). See the instructions at

the beginning of Lab #1 to refresh your memory.

overview

This lab has you compare several sorting algorithms. You will use the module timeit module to estimate

the total time taken. When two algorithms have very similar times, you may also use cPro�le to investigate

how the various functions spend their execution time.

Do not be surprised if sometimes the output of the pro�ler is not what you expect! Think about all

the various factors that a�ect the pro�ler. Always think about better ways of performing analysis of code

performance. Feel free to tweak the code to try to come up with more sensible results, or write your own

implementation of the algorithms to see if you can improve performance. You may also want to look at the

documentation for cProfile or timeit:

http://docs.python.org/3.3/library/profile.html

http://docs.python.org/3.3/library/timeit.html

Warning! In order for the cPro�le module to work correctly under Wing, you must execute your code in

DEBUG mod | in other words, click on the Debug button instead of the Run button. This is due to some

unknown (in)compatibility issue. . .

sorting big-Oh

� For this part, student s2 drives and student s1 navigates.

� In CSC108 you may have seen several sorting algorithms in Python. Today, we would like you to run

some sorting algorithms on inputs of various sizes, record and compare their timing results. From

these results we want you to determine which sorting algorithm is the fastest in general, which is the

usually the slowest, and how these comparisons scale with the size of the list being sorted.

1

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab01/handout.pdf
http://docs.python.org/3.3/library/timeit.html
http://docs.python.org/3.3/library/profile.html
http://docs.python.org/3.3/library/profile.html
http://docs.python.org/3.3/library/timeit.html


� As you work through the various sorting algorithms described below, record your results on chart.xls,

and plot the results on a graph.

� You can �nd the necessary �les here: sort.py, and test sort.py.

When you're done, show your TA what you've accomplished.

sorting optimization

Although the scaling of an algorithm with size of the problem, n, is determined by its big-Oh characteristic,

there is often often substantial time to be saved by tweaking di�erent implementations of the same algorithm.

Several of the sorts have di�erent variants. If you have time, you can uncomment the profile comparisons

code in test sort, and run it under DEBUG, if you want to compare and tweak these variants. For this part,

student s1 drives and student s2 navigates.

selection sort

Selection sort works by repeatedly selecting the smallest remaining item and putting it where it belongs.

When you pro�le selection sort, you'll discover that a lot of time is spent calling len. Fix this by

introducing a temporary variable in the main while loop and re-run the pro�ling. You'll notice that len is

still being called a lot; �nd out where and use the same trick to avoid calling len so much. How much time

did you just save?

insertion sort

Insertion sort works by repeatedly inserting the next item where it belongs in the sorted items at the front

of the list. There are two versions: one manually moves items using a loop, and the other relies on Python's

del. Why do you think Python's list code is so much faster? Of selection sort and insertion sort, which is

faster? Why do you think this is?

bubblesort

Bubblesort works by repeatedly scanning the entire list and swapping items that are out of order. One

consequence of bubblesort is that, on the �rst scan, the largest item will end up at the end of the list no

matter where that item was before the �rst scan. Given what we've learned from timing selection and

insertion sort, how do you think bubblesort will perform?

There are two versions. The second one has a check to see whether any items have been swapped on the

last scan, and if not it stops early (in that case, no items were out of order). How much of a di�erence does

it make to exit early? Is it noticeable? Once you've done the bubblesort timing, �gure out which is faster

and why.

mergesort

Mergesort is di�erent: it splits the list in half, sorts the two halves, and then merges the two sorted halves.

There are two versions: the �rst one uses a helper function mergesort 1 that returns a new sorted list (and

thus only replaces the items in the original list once, when the helper function exits), and the second one

uses a helper function mergesort 2 that sorts the list between two indices and continually updates the

original list. Which do think is faster, and why?

2

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab09/chart.xls
http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab09/sort.py
http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab09/test_sort.py


quicksort

Quicksort works by partitioning the list into two halves: those items less than the �rst item, and those

greater than the �rst item. For example, if the list is [5, 1, 7, 3, 9, 12], then the helper function partition

will rearrange the list into this: [3, 1, 5, 9, 12, 7] | notice that the 5 is now in the right place. Then the

left and right sections are sorted using quicksort. How fast is this? Is quicksort faster on nearly-sorted lists

or on random data? Why?

There are two versions of quicksort. The second one uses indices to sort the list in-place, without making

copies of each sublist. How much di�erence does this make?

list.sort()

How much of a di�erence does it make to use Python's built-in sort? Why do you think it is so much faster?

nearly-sorted data, reversed data

The results hold for randomized input. Investigate whether there is an input that leads to fast or slow times:

try both nearly-sorted input and reverse-sorted input. (See the comments in test sort.py to �nd out how

to generate these other kinds of inputs.)

3


