
CSC148, Lab #5

week of October 14th, 2013

This document contains the instructions for lab number 5 in CSC148H1. To earn your lab mark, you must

actively participate in the lab. We mark you in order to ensure a serious attempt at learning, NOT to make

careful critical judgments on the results of your work.

General rules

We will use the same general rules as for the �rst lab (including pair programming). See the instructions at

the beginning of Lab 1 to refresh your memory.

Overview

In this lab you will learn, and reason about, some python idiom.

List and generator comprehensions capture logical patterns that are often used by programmers. David

Goodger describes them:

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#list-comprehensions

As part of Python idiom, these forms make a programmer's intention clear. List comprehensions make it

clear that you intend to build a new list from an old list (or other iterable) without changing the original

iterable. Generator comprehensions make it clear that you want a sequence of values built from an old

iterable, but you don't need them all at once.

These also improve performance.

Vector and matrix operations

(Student s1 drives, student s2 navigates)

Vectors can be represented as python lists of numbers. You may have encountered them, but in any case

they support some operations peculiar to themselves.

dot product

One such operation is the dot-product | a way of multiplying two vectors to get a single number (rather

than a list of numbers). Here's an example, where the symbol � represents the dot-product operation:

[1; 2; 3] � [4; 5; 6] = (1� 4) + (2� 5) + (3� 6) = 4 + 10 + 18 = 32

Basically, we multiply the corresponding elements of the two vectors together, and then sum those products.

1

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab01/handout.pdf
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#list-comprehensions

Your �rst task is to complete the de�nition of dot_prod() in idiom.py. We're going to micro-manage a

bit and specify how you implement it. Please refer to How to code like a Pythonista while you do these.

1. Read the Python docs on zip and �gure out how to transform vectors (number lists) u and v into a

single list of pairs | the pair of u and v's �rst elements, then the pair of their second elements, and

so on. Please note that xrange and irange don't exist in Python 3.

2. How do you transform a pair of numbers (n1; n2), into the product n1 � n2 in Python? You have the

option (but are not required) of considering tuple unpacking here

3. Read \How to code like a Pythonista" and �gure out how to write a list comprehension of all the

products of the pairs generated in Step 1

4. Use the built-in sum function to add all the numbers in your list comprehension

matrix-vector product

Another operation multiplies a matrix M | essentially a list of vectors | times a vector v, resulting in a new

vector. The idea is to take the dot-product of each vector in the matrix with the vector you are multiplying

it with to yield the corresponding entry in the new vector. An example should make this more concrete

(here we indicate the matrix-vector product by �)

[[1; 2]; [3; 4]]� [5; 6] = [[1; 2] � [5; 6]; [3; 4] � [5; 6]] = [17; 39]

Notice that we recycle the dot-product in order to implement the matrix-vector product.

Your next task is to complete the de�nition of matrix_vector_prod() in idiom.py. Again we will

micro-manage your implementation

1. How do you compute the dot-product of a vector from M with v? Please don't repeat work you've

already done.

2. How do you make a list comprehension for the dot-products from Step 1?

If you get stuck, call over your TA. If you don't get stuck, show your work to your TA.

list efficiency and sequences

(Student s2 drives, student s1 navigates)

List comprehensions are designed to be both clear and e�cient. We can test this claim by doing the

same thing in two di�erent ways.

Your task is to complete functions squares_build_list, squares_use_comp, and squares_use_gen in

idiom.py. Currently these functions run very quickly, but very incorrectly! Again, we're going to micro-

manage so that the di�erences in implementation become obvious.

For squares_build_list you are to build up a list of the �rst n squares of natural numbers by looping

over the values [0, ..., n-1] and appending each square to an initially empty list. A handy source of the

values [0, ..., n-1] is range(n). This should be a familiar task. Notice that computer scientists are generous

enough to include 0 among the natural numbers, hence the n� 1 ending value.

For squares_use_comp you produce exactly the same list using a list comprehension. Consult Goodger

if you are having trouble writing down the list comprehension.

For squares_use_gen you produce the corresponding sequence using a generator comprehension (see

Goodger again).

2

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab05/idiom.py
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#list-comprehensions
http://docs.python.org/3.3/library/functions.html#zip
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#swap-values
http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab05/idiom.py
http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab05/idiom.py

The supplied docstrings have a single test case, and it's up to you if you want to provide more.

Evaluate idiom.py, so that the timing tests at the end of the �le are run. Discuss why the results are

di�erent, and under which conditions each variant should be used.

If you get stuck, call over your TA. If you don't get stuck, show your completed work to your TA.

Pythagorean triples

List comprehensions aren't just limited to iterating over a single iterable. Try out the following example:

[(i, j, k) for i in range(3) for j in range(3) for k in range(3)]

Pythagorean triples are triples of integers (x; y; z) where x
2 + y

2 = z
2 (representing the sides of special

right-angle triangles). These can be discovered analytically, but why not let a computer do the work?

Complete the implementation of pythagorean_triples in idiom.py. You guessed it: we'll micro-manage

and want you to use comprehensions. Here's the idea

1. From the example above, you already know how to produce all the triples in the appropriate range.

Might as well start there.

2. You should restrict the produced list to just those triples with distinct values. You can add an if

condition after all the for foo in bar clauses.

3. What you really want is to restrict the list so that they are pythagorean triples. Add to your if

condition.

Notice that the end product is a list. Can you think of any conditions under which you'd want it to be a

generator?

If you get stuck, call over your TA. If you don't get stuck, show your completed work to your TA.

any and generators

(Student s1 drives, student s2 navigates)

Sometimes we write a loop with an early-exit condition | for example, the much-maligned break |

because we are only interested in the �rst occurrence of some value in a sequence. Generators, as well as

the built-in function any provides an alternative

In a Python shell, experiment with the following expressions:

>>> g = (x for x in range(0,1))

>>> any(g)

...

>>> g = (x for x in range(1, 2))

>>> any(g)

Explain this result. Now experiment with the three expressions below. Can you explain the di�erence in

performance?

>>> [x for x in [1, 2, 3] if any((x == y for y in range(1,4)))]

>>> [x for x in [1, 2, 3] if any((x == y for y in range(1,4000000)))]

>>> [x for x in [1, 2, 3, -1] if any((x == y for y in range(1,4000000)))]

If you get stuck, talk to your TA. If you don't get stuck, also talk to your TA.

3

http://www.cdf.toronto.edu/~heap/148/F13/Labs/lab05/idiom.py
http://docs.python.org/2/library/functions.html#any

