
CSC148, Assignment #2

Regular expressions

due November 5th, 2013, 11:59 p.m.

October 30, 2013

introduction

Regular expressions (abbreviated to regex, the pronunciation of which gives rise to endless ame wars. . .)

are used in various programming languages and utilities to match entire classes of strings. This assignment

will give you experience modelling a regular expression as a tree, and detecting which strings match a given

regular expression.

We won't favour any particular language or utility, such as Python, Java, or Linux's grep, but use a

stripped-down simpli�ed regular expression form that contains all the essential principles. In particular, you

are not permitted to import Python's regular expression module re into any �le you submit.

We'll only be dealing with the binary alphabet, i.e., f0; 1g. Generalizing to arbitrary alphabet is straight

forward, but doesn't buy us much for the purpose of this assignment. The elementary regex symbols we'll

use can easily typed in Python source code. A regex (over binary alphabet 0; 1) is a nonempty string made

up of the following symbols.

’0’ called zero

’1’ one

’e’ pronounced \ee" or \epsilon"

’|’ bar

’.’ dot

’*’ star

’(’ left parenthesis, or left

’)’ right parenthesis, or right

There are several rules determining that a string made up of these symbols is a valid regular expression:

1. There are 3 regexes of length one. They are:

� ’0’

� ’1’

� ’e’

1

http://docs.python.org/3.3/howto/regex.html
http://www.tutorialspoint.com/java/java_regular_expressions.htm
https://help.ubuntu.com/community/grep

2. If r is a regular expression, then so is r + ’*’, where the plus symbol '+' means string concatenation,

as in Python.

3. If r1 and r2 are regexes, then so are:

� ’(’ + r1 + ’|’ + r2 + ’)’

� ’(’ + r1 + ’.’ + r2 + ’)’

Here are some examples of regexes:

� ’0’

� ’1’

� ’e’

� ’0*’

� ’1*’

� ’e*’

� ’(0|1)’

� ’(1.0)’

� ’(e|0)’

� ’(1.e)’

� ’(0*|1*)’

� ’((0.1).0)’

� ’((1.(0|1)*).0)’

tree representation of regexes

Every regex can be (uniquely) represented as a tree. Each leaf node contains exactly one of '0', '1', or 'e'.

Each internal node contains exactly one of '.', '|', or '*'.

A regex of length one is represented by a tree of one node containing the symbol in the regex. For

example, the regex '0' is represented by the tree whose root is the leaf node containing '0'.

A regex of the form r + '*' is represented by a tree whose root node contains '*', and that node has one

child which is the tree that represents the regex r. E.g., the regex '1*' is represented by the following tree:

’1’

’*’

A regex of the form ’(’ + r1 + ’|’ + r2 + ’)’x1 is represented by a tree whose root node contains ’|’,

and that node has left and right children which are the trees that represent the regexes r1 and r2 respectively.

For example, the regex ’(0|1)’ is represented by the following tree:

2

’0’ ’1’

�� SS

’|’

A regex of the form ’(’ + r1 + ’.’ + r2 + ’)’ is represented just as a regex of the form ’(’ + r1 +

’|’ + r2 + ’)’, except the root now contains ’.’ rather than ’|’. For example, the regex ’((0.1).0)’

is represented by the following tree:

’0’ ’1’

�� SS

’.’ ’0’

��
QQQ

’.’

Here's an example that combines all concepts from above. The regex ’((1.(0|1)*).0)’ is represented by

the following tree:

’1’

’0’ ’1’

�� SS

’|’

’*’

��� SS

’.’ ’0’

�
�
HHHH

’.’

matching strings with regexes

A binary string is a string (possibly empty) that contains only the symbols ’0’ and ’1’. For a regex r and

a binary string s, we de�ne below what it means for r to match s. (Equivalently we may also say that s

matches r, or that r and s match).

1. A regex of length one matches exactly one string. Speci�cally:

� the regex ’0’ matches the string ’0’

� the regex ’1’ matches the string ’1’

� the regex ’e’ matches the string ’’ (i.e., ’e’ matches the empty string)

2. A regex of the form r + ’*’ matches string s if and only if either

(a) s equals ’’ (empty string), or

(b) s has the form s1 + s2 + � � �+ sk where k > 0 and r matches every si

For example, the regex ’0*’ matches any string (possibly empty) that contains no other symbols than

the symbol ’0’

3. A regex of the form ’(’ + r1 + ’|’ + r2 + ’)’ matches string s if and only if:

3

(a) r1 matches s, or

(b) r2 matches s, or

(c) both of the above

For, example, the regex ’(1|0*)’ matches the string ’1’ as well as any string that contains only the

symbol ’0’

4. A regex of the form ’(’ + r1 + ’.’ + r2 + ’)’ matches a string s if and only if there are two

strings s1 and s2 (each possibly empty) such that

(a) s is the concatenation of s1 and s2 (i.e., s equals s1 + s2),

(b) r1 matches s1, and

(c) r2 matches s2.

For example, the regex ’(1*.0)’ matches any string that contains exactly one ’0’, and that ’0’

occurs at the very end.

Here's an example that combines all concepts from above. The regex ’((1.(0|1)*).0)’ matches any string

that starts with ’1’ and ends with ’0’.

your job

You may work with up to two other students currently in CSC148 | in other words, a group of 1 to 3

people. Your tasks are:

1. Complete the initializer of RegexTree in regextree.py. In the same directory you will need regextreen-

ode.py in order to import the various regex node classes. Currently the initializer sets self.root to

None, but when you're done it will be the root node of the regular expression tree that corresponds

to the argument regex. Remember that you are not allowed to import Python regular expression

modules such as re.

2. Also in regextree.py, create a module-level function regex_match(r, s) that returns True if and only

if string s matches regular expression tree r.

3. Add your name(s) to the license at the top of regextree.py, indicating that you have added intellectual

value to it. You may only distribute the �le, or modi�ed versions of it, with the same license

4. Submit regextree.py to MarkUs

4

http://www.cdf.toronto.edu/~heap/148/F13/Assignments/A2/regextree.py
http://www.cdf.toronto.edu/~heap/148/F13/Assignments/A2/regextreenode.py
http://www.cdf.toronto.edu/~heap/148/F13/Assignments/A2/regextreenode.py
http://www.cdf.toronto.edu/~heap/148/F13/Assignments/A2/regextree.py
http://www.cdf.toronto.edu/~heap/148/F13/Assignments/A2/regextree.py
https://markus.cdf.toronto.edu/csc148-2013-09/

