
CSC104 Project 2, Winter 2013

Due: Friday April 5th, 11:59 pm

You will complete two simulations, fractal.rkt and contrast.rkt, described below. Your task is to

download contrast.rkt and fractal.rkt from the course website, under April 5th (right-click on them). Each

of these �les has comments indicating things you need to �x. The comments begin with three exclamation

marks:

; !!! <some important work-needing instruction goes here>

Your job is to try to �x these, one-by-one, until you have a working simulation.

NB: Start early and leave yourself time to ask questions when you're stuck. Also, it's a really good idea

to �x one thing at a time, and verify that it is actually �xed, before proceeding.

contrast.rkt explained

Each glowing dot in the rectangle of dots that makes up an image shines red, green, and blue light into our

eyes, the mixture creating the colour we perceive. The increment contrast between high and low intensities

creates visual contrast.

The simulation contrast experiments with making an image high contrast by increasing the intensities

of light colours (those with intensity 128{255) and decreasing the intensities of dark colours (those with

intensity 0{127). When you're done the simulation, you'll be able to increase the contrast of the red, green,

and blue intensities independently, by hitting the "r", "g" and "b" keys, respectively. If you make all three

components high enough contrast, you get an image with essentially solid colour regions.

But �rst, you have to either �x de�nitions or create check-expect tests for small functions used to make

the colour components high contrast, and write some [question answer] pairs so that the function toggle

will respond to keystrokes correctly.

fractal.rkt explained

Sierpinski's triangle is a classic fractal | it decomposes into three smaller sierpinski's triangles, and each

of those decomposes into smaller sierpinski's. . . and so on. You can get some idea of how to create code for

sierpinski's triangle online, by viewing the �rst video on recursion.

The simulation fractal.rkt allows you to increase or decrease the depth of the fractal by hitting the "up"

or "down" arrow keys. If the fractal gets too deep, it will exceed the amount of screen space, so fractal.rkt

(once you have it working) will also allow you to increase or decrease the size of the base triangle by hitting

the "right" or "left" arrow keys.

1

http://www.cdf.toronto.edu/~heap/104/W13/Projects/contrast.rkt
http://www.cdf.toronto.edu/~heap/104/W13/Projects/fractal.rkt
http://www.cdf.toronto.edu/~heap/Racket/recursion.html
http://www.cdf.toronto.edu/~heap/Racket/recursion.html


Bonus possibilities — 5%

If you get fractal.rkt working, here are some bonus features you may add. Your grader will award up to 5%

of the mark for this project as a bonus for a well-done extra feature. NB These bonus features will typically

violate your already-working check-expects, so you should submit a separate �le fractalBonus.rkt with the

added features.

� Use a di�erent fractal than sierpinski's triangle, for example the koch curve or snowake, or another

fractal of your choice.

� Randomize the color of the base triangles.

� Use a di�erent base shape than a triangle.

� Speed up sierpinski for depths of 10 or so, using the memoization videos

What to hand in

You will submit the following �les to MarkUs:

� contrast.rkt

� fractal.rkt

� (possibly) fractalBonus.rkt

You may work in groups of no more than 3 in preparing your project. To set up a trio or pair, one group

member should log on to MarkUs and invite the other one or two. You should submit your �les early and

often. The �rst time you create a �le with meaningful content, submit it. You may re-submit the same �le

as many times as you wish, and only the last submission is stored. A good habit is to re-submit your �les

each time you improve them.

2

https://markus.cdf.toronto.edu/csc104-2013-01/

