
Complete the missing expressions below

(require picturing-programs)

; sierpinski triangle of depth 0

(define sierp_0 (an expression for a solid green triangle of size 10) )

; sierpinski triangle of depth 1

(define sierp_1 (an expression for sierp_0 above two sierp_0s beside each other) )

; sierpinski triangle of depth 2

(define sierp_2 (an expression for sierp_1 above two sierp_1s beside each other) )

; sierpinski triangle of depth 3

(define sierp_3 (an expression for sierp_2 above two sierp_2s beside each other) )

; sierpinski triangle of depth 4

(define sierp_4 (an expression for sierp_3 above two sierp_3s beside each other) )

1



Complete the missing parts of the function sierp below.

(require picturing-programs)

; sierp : number -> image

; Sierpinski’s triangle of depth d

(define (sierp d)

(cond

[(zero? d)

(here you need an expression for a solid green triangle of size 10) ]

[(equal? d 1)

(an expression for (sierp 0) above two (sierp 0)s beside each other) ]

[(equal? d 2)

(an expression for (sierp 1) above two (sierp 1)s beside each other) ]

[(equal? d 3)

(an expression for (sierp 2) above two (sierp 2)s beside each other) ]

[(equal? d 4)

(an expression for (sierp 3) above two (sierp 3)s beside each other) ]

))

2



The de�nition of sierp was a bit repetitive, and only went as far as allowing (sierp 4). Use the same

ideas, but do some arithmetic with the placeholder d to de�ne sierpinski below:

(require picturing-programs)

(define (sierpinski d)

(cond

[(zero? d) (triangle 10 "solid" "green")]

[else

(an expression to put a sierpinski of one smaller than d above

two sierpinskis of one smaller than d) ]

))

3


