CSC104 fall 2012
 Why and how of computing week 7

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/F12/
416-978-5899

Text: Picturing Programs

Outline

convert to binary

More numbers
characters, images, sound

Really crude encryption

Notes

number to binary

How do you write (37 in binary?
?????? ?? ? ? $\frac{37}{2}$
$18 / 2 \downarrow 9 / 2 \rightarrow 4 / 2$

- Suppose you knew it had six binary digits (bits), ??????? Does the fact that 37 is odd help you know whether the bit on the right is a 0 or 1 ?
- Suppose you know what the digit on the right is. What connection is there between the remaining bits, ?????, and $37 / 2$ (rounded down)?

Multiplication

 multiply, shift, add

Once we cail add non-negative integers, we can multiply them with a smali number of additional operations. Consider the binary multiplication table:

I use this to multipy the binary representations of 15 and 19. Other arithmetic functions are implemented as particular circuits.

Negative numbers, fractions 32 bits , reassign some bits use 1 digit for +/-

Sometimes the left-most bit is used to represent + (as 0) or (as 1). Another (efficient) scheme is called two's complement
 negating $\#$
positive $\mathbb{4}$

$$
3 \cdot 2=\frac{32}{10}
$$

In base 10, by shifting a number right (past the decimal point) we multiply it by $1 / 10$. In binary, we shift right past the binary point, and reduce by $1 / 2{ }_{i} 1 / 4$

$$
\begin{array}{ll}
\text { reduce by } 1 / 2_{1 / 4} & 101=5 \\
1.01=\frac{5}{4}= & 10.1=5 / 2=21 / 2
\end{array}
$$

A common scheme, called IEEE floating point, uses 64 bits (binary digits): one for the sign, 11 for the magnitude (from 2^{-1022} to 2^{1023}) and the remainder for an non-negative integer.

sequere of bits signify

Enough numbers!

what about text?
literates.

7 bits is enough to represent 128 values: upper- and lower-case latin characters, 10 numerals, some punctuation, and special control characters.

More than 110,000 characters can be specified with unicode (using more than 7 bits each).

UNIVERSITY OF TORONTO

What about images

```
how do those pixels glow so?
```

Computers represent images as rectangular arrays of glowing pixels. There are various schemes to determine what colour each pixels glows, one is rgba, which is what we use in picturing-programs

Each colour is a value between 0 and 255 (inclusive). This allows 2^{32} over 4 billion colours. The "alpha" band represents opacity from clear (0) to opaque (255).

Sound

All the complexity of a room full of instruments can be simulated using a stream of numbers. After all, you can model sound as the displacement of your eardrum one way or the other. That's what the WAV sound format, a variety of LPCM (Linear Pulse Code Modulation) does.
a blast from the past really bad text encryption

$$
\begin{aligned}
& A \rightarrow M \text {, add } 13 \\
& N \rightarrow z \text {, subtract. } \\
& a_{n} \rightarrow z \text {, and subtrod. } .
\end{aligned}
$$

Encrypt "S' bRING" \rightarrow "FGEVAT"

rot13 as an algorithm

- What is given, what's required?

$$
\begin{aligned}
& \text { unencryled struy } \\
& \text { encrypted (rot } 13 \text {) } \\
& \text { version }
\end{aligned}
$$

- Redo the last step for a single character

$$
\xrightarrow{\rightarrow} \text { a single character }
$$

- What is a really simple rule (or set of rules) for (rot13 c), where c is some character?
- It might help to know that characters \# $\backslash \mathrm{A}$ through \# $\backslash \mathrm{Z}$ have ascii encodings 65 through 90 .

more rot13

- What about characters that aren't in \#\A through \#\Z?
- What about lower-case characters?
- How do we get from characters to strings of characters?

reversing strings

Give step-by-step instructions to reverse "string"

- given/required?
- check-expect some small examples?
- try to write down a recipe

How do you recognize a palindrome, such as "rotor" or "ACTAGATCA"?

- given/required?
- check-expect a small example or two
- try to state the recipe

Notes

UNIVERSITY OF TORONTO
\square

