$$
\begin{aligned}
& \text { Friday - 9:10 am - BA3175 - meet IAs } \\
& \text { CSC104 fall } 2012 \text { - ask tutorial } \\
& \text { Why and how of computing } \\
& \text { week } 6
\end{aligned}-\text { Quiz } \# 4
$$

Danny Heap heap@cs.toronto.edu
BA 4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/F12/
416-978-5899

Text: Picturing Programs

Outline

Representing information

Notes
\square

Some convergence

digital, binary, small, fast, cheap...

Computers have converged on two general design ideas:
digital: Using discrete, sharply-changing, rather than analog, smoothly-changing states
binary: Two states is the smallest, most easily designed

Boolean logic simple operators

Two values, true and false can be combined.

Boolean logic

 more simple operators$$
\begin{aligned}
& (>35) \\
(<1 & 2)
\end{aligned}
$$

Two values, true and false can be combined:

Boolean logic

one more simple operator

$$
\begin{aligned}
& \text { (not true) } \rightarrow \text { false } \\
& (\operatorname{not} \underbrace{(>3,5)}_{\neq}) \rightarrow \text { true. }
\end{aligned}
$$

Single value, true or false can be transformed:

Boolean arithmetic

Two values, 0 2. 1, can be combined: $9+1$
$=0$
$(\operatorname{covg} 11)$
1, can be combined:

| A | B | $\mathrm{C}_{\text {in }}$ | C $_{\text {out }}$ | S |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1. | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

binary, decimal. . .

5897 - multiply each digit by the appropriate power of 10

$$
\begin{aligned}
& 5 \times 1000+8 \times 100+9 \times 10+7 \times 1 \\
& \stackrel{\text { Shift }}{L} \text { (divide by } 10 \text {, round } / \text {) } \\
& \text { shift multiply by } 10
\end{aligned}
$$

- What happens when you add zeros on the right - 58970 589700?
- What happens when you drop digits from the right - 589, 58 ?

$$
\rightarrow \text { add co ad right? }
$$

- Can you guess at a general rule?

$$
\begin{aligned}
& \text { s at a general rule? } \\
& \text { drop right digit? }
\end{aligned}
$$

binary, decimal. . .

1011 multiply each digit by the appropriate power of 2

$$
\frac{8}{1 \times 8}+0 \times 4+1 \times 2+1 \times 1
$$

- What happens when you add zeros on the right - $\underbrace{10110}$ 101100?
- What happens when you drop digits from the right - 101, 10 ?
- Can you guess at a general rule?

number to binary

How do you write 37 in binary?

- Suppose you knew it had six binary digits (bits), ??????. Does the fact that 37 is odd help you know whether the bit on the right is a 0 or 1 ?
- Suppose you know what the digit on the right is. What connection is there between the remaining bits, ?????, and $37 / 2$ (rounded down)?

Notes

UNIVERSITY OF TORONTO
\square

