CSC104 winter 2013

Why and how of computing week 1

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/W13/

416-978-5899

orswer

Course

Text: Picturing Programs

Outline

Introduction

Algorithms

Notes

Who needs to know why and how?

- ▶ We all consume computing, the thing is to change it comput
- ► Computers and networks change society privacy, property, democracy, work, education for better or worse
- ► We get an insight into computer culture by making some artifacts: programs

Two tracks in this course

► Insight into computing mindset: problem-solving and programs → "gentle in two duction to programming"

► History of computing technology, overview of modern computing OS, social issues

How to do well at this course

- Read the course information sheet as a two-way promise

 becomes final 11/1/13
- ▶ humour me: read your email ← | send out announcements
- ▶ Question, answer, record, synthesize > write on your wpy of these slides-
- ► Collaborate with respect

What to do with computing machines? simple enough for a sollow

Algorithms!

simple) sequence of feasible deterministic (in this course)

credit Al-Khwarizmi

Some in Stractions

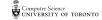
Hioro Some in Stractions

result

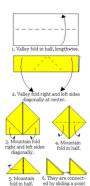
Examples

- multiplication
- PBJ
- Google page rank

Sticky algorithm pbj


peanut butter bread jam \rightarrow PBJ sandwich could you explain it to a friend over the phone, who had never made it?

which operations are built-in?


what if conditions change? → PB had foil liner

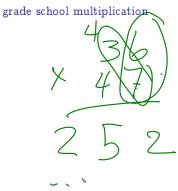
name repeated operations "5coop from jan" does sequence matter? > scoop before jan is ▶ does sequence matter? —

paper folding

(ignore the diagram on the left)
fold over upper surface of paper strip
after one fold, it has a downward crease
fold the once-folded strip again
and it has one upward, two downward
there are good physical reasons you
can't experiment far beyond 6 folds
given the number of folds,
predict the pattern

For more information, and hints, see paper folding problem

Euclid's GCD



the largest whole number that divides two non-negative whole numbers is their Greatest Common Denominator (GCD) we could find it by sifting through all the divisors, but there's a quicker way

Euclid noticed that $(\gcd n1 \ n2) = (\gcd n2 \backslash (remainder \ n1 \ n2))$

Also, $(\gcd n10) = n1$. Repeat as needed.

The way we were

×	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36 (42	48	54
7	0	7	14	(21	> 28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

We'd memorize, and organize, the algorithm for 27×38 Much better than XXVII \times XXXVIII

Notes

