CSC104 fall 2013
 Computational thinking week 5

Danny Heap heap@cs.toronto.edu
BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/F12/
416-978-5899

Text: Picturing Programs

Outline

Representing information

Notes
\square

Some convergence digital, binary, small, fast, cheap...

Computers have converged on two general design ideas:
digital: Using discrete, sharply-changing, rather than analog, smoothly-changing states
binary: Two states is the smallest, most easily designed

memory should be reliable
fast, and cheap
magnetic (left), transistor (right)

Boolean logic

simple operators

Two values, true and false can be combined:

Boolean logic

```
more simple operators
```

Two values, true and false can be combined:

Boolean logic

one more simple operator

Single value, true or false can be transformed:

Boolean arithmetic

bitwise operator

Two values, 0 or 1 , can be combined:

A	B	$\mathrm{C}_{\text {in }}$	$\mathrm{C}_{\text {out }}$	S
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	0	1
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

binary, decimal...

5897 - multiply each digit by the appropriate power of 10

$$
\underbrace{5 \times 10^{3}}_{5000}+\underbrace{8 \times 10^{2}}_{800}+\underbrace{9 \times 10^{1}}_{90}+\underbrace{7 \times 10^{0}}_{7}
$$

- What happens when you add zeros on the right -- 58970 589700?
- What happens when you drop digits from the right - 589, 58?
- Can you guess at a general rule?

binary, decimal...

1011 multiply each digit by the appropriate power of 2

$$
\underbrace{1 \times 2^{3}}_{8}+\underbrace{0 \times 2^{2}}_{0}+\underbrace{1 \times 2^{1}}_{2}+\underbrace{1 \times 2^{0}}_{1}
$$

- What happens when you add zeros on the right - 10110, 101100?
- What happens when you drop digits from the right - 101, 10 ?
- Can you guess at a general rule?

number to binary

How do you write 37 in binary?

- Suppose you knew it had six binary digits (bits), ??????. Does the fact that 37 is odd help you know whether the bit on the right is a 0 or 1 ?
- Suppose you know what the digit on the right is. What connection is there between the remaining bits, ?????, and $37 / 2$ (rounded down)?

Notes

UNIVERSITY OF TORONTO
\square

