
CSC104 fall 2013
Computational thinking

week 2

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/W13/

416-978-5899

Text: Picturing Programs

http://www.cdf.toronto.edu/~heap/104/W13/
http://www.picturingprograms.com


could algorithms run the world?

Spectacular algorithm success leads to questions:

I Is there, potentially, an algorithm to solve every problem?

I If there are two or more algorithms solving the same

problem, how do you choose?

I How do you discover new algorithms?



problems without an algorithm

before electronic, programmable

computers

Alonzo Church and Alan Turing

showed there were many

unsolvable problems

Classic example: Halting Problem

http://en.wikipedia.org/wiki/File:Alonzo_Church.jpg
http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg
http://en.wikipedia.org/wiki/Halting_problem


another example

If there an algorithm for each problem, how about one to decide

whether declarative English sentences are true? How about:

This statement is false.

What should the algorithm that veri�es (or not) sentences do?



algorithms that take too long

An algorithm may exist, but take too long to be feasible:

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

Of interest from rabbit-breeding to biology to computer science

(see Vi Hart), calculating Fibonacci sequence this way gets slow

for numbers over 40.

http://vihart.com


an everyday (once) algorithm

Before on-line dictionaries, it was common to look up de�nitions

in a paper-and-ink dictionary. There are (at least) two di�erent,

correct ways to �nd the leaf (2-sided sheet) with the word

you're looking for (or conclude it's not in the dictionary).

I linear search

I binary search



how to solve it
it being a new problem

Clearly there's no fool-proof method, but there's some

techniques that often make progress. It helps to write down the

whole process:

I Understand the problem

I Devise (one or more) plan(s)

I Try the plan

I Look back

http://www.math.utah.edu/~pa/math/polya.html


paper folding?
try it out

I Understand the problem (what's given, what's required)?

I Devise a plan

I Try at least one plan (be ready to abandon it too)

I Look back



Notes


	algorithms questions
	Notes

