CSC104 fall 2013

Why and how of computing week 1

Outline

Introduction

Algorithms

Notes

Who needs computational thinking?

Single purpose, not programmable, not used throughout so ciety

- ▶ We all consume computing, the thing is to change it
- ► Computers and networks change society privacy, property, democracy, work, education for better or worse
- We get an insight into computer culture by making some artifacts: programs

this is why Dr Racked

Two tracks in this course

Insight into computing mindset: problem-solving and programs

History of computing technology, overview of modern computing OS, social issues or way, etc.

How to do well at this course

▶ Read the course information sheet as a two-way promise

▶ humour me: read your email

Question, answer, record, synthesize

► Collaborate with respect

What to do with computing machines? Algorithms!

simple sequence of feasible

steps to solve a problem

deterministic (in this course)

credit Al-Khwarizmi

from Vast

store of culture +

prowledge in

aratian empire.

Examples

- multiplication
- ▶ PBJ
- ▶ Google page rank

Sticky algorithm pbj

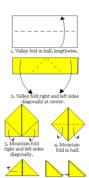
peanut butter bread jam \rightarrow PBJ sandwich could you explain it to a friend over the phone, who had never made it?

- which operations are built-in?) -> otherwise, explain what if conditions charge?
- what if conditions change?

name repeated operations

so we can re-use them

does sequence matter?


Spread PB before removey

bread from bag

Computer Science

paper folding

(ignore the diagram on the left)
fold over upper surface of paper strip
after one fold, it has a downward crease
fold the once-folded strip again
and it has one upward, two downward
there are good physical reasons you
can't experiment far beyond 6 folds
given the number of folds,
predict the pattern

For more information, and hints, see paper folding problem

2000+ year-old algorithm

Euclid's GCD

the largest whole number that divides two non-negative whole numbers is their Greatest Common Denominator (GCD) we could find it by sifting through all the divisors, but there's a quicker way

Euclid noticed that $(\gcd n1 \ n2) = (\gcd n2 \ (remainder \ n1 \ n2))$ Also, $(\gcd n10) = n1$. Repeat as needed.

The way we were grade school multiplication

We'd memorize, and organize, the algorithm for 27×38 Much better than XXVII \times XXXVIII

Notes

