CSC104 fall 2013 Why and how of computing week 1

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators) http://www.cdf.toronto.edu/~heap/104/W13/ 416-978-5899

> Text: Picturing Programs http://www.picturingprograms.com

> > ヘロト ヘロト ヘヨト ヘヨト

Outline

Introduction

Algorithms

Notes

Who needs computational thinking?

- ▶ We all consume computing, the thing is to change it
- Computers and networks change society privacy, property, democracy, work, education — for better or worse
- We get an insight into computer culture by making some artifacts: programs

・ロト ・ 何 ト ・ ヨ ・

Two tracks in this course

 Insight into computing mindset: problem-solving and programs

 History of computing technology, overview of modern computing OS, social issues

How to do well at this course

▶ Read the course information sheet as a two-way promise

(日)、(四)、(日)、(日)、

humour me: read your email

Question, answer, record, synthesize

Collaborate with respect

What to do with computing machines? Algorithms!

simple sequence of feasible steps to solve a problem deterministic (in this course) credit Al-Khwarizmi

Examples

- multiplication
- ▶ PBJ
- Google page rank

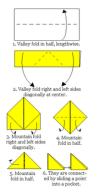
Sticky algorithm

peanut butter bread jam \rightarrow PBJ sandwich could you explain it to a friend over the phone, who had never made it?

・ロト ・ 一下・ ・ ヨト ・

- which operations are built-in?
- what if conditions change?
- name repeated operations
- b does sequence matter?

paper folding



(ignore the diagram on the left) fold over upper surface of paper strip after one fold, it has a downward crease fold the once-folded strip again and it has one upward, two downward there are good physical reasons you can't experiment far beyond 6 folds given the number of folds, predict the pattern

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

For more information, and hints, see paper folding problem

2000+ year-old algorithm Euclid's GCD

the largest whole number that divides two non-negative whole numbers is their Greatest Common Denominator (GCD) we could find it by sifting through all the divisors, but there's a quicker way

・ロト ・ 何 ト ・ ヨ ・

Euclid noticed that $(gcd \ n1 \ n2) = (gcd \ n2 \ (remainder \ n1 \ n2))$ Also, $(gcd \ n1 \ 0) = n1$. Repeat as needed.

The way we were grade school multiplication

×	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

(日)、

æ

We'd memorize, and organize, the algorithm for 27×38 Much better than XXVII \times XXXVIII

Notes

