Question 1. [17 marks]

Part (A) [5 marks]
Given an example of an algorithm that you use outside of CSC104. Explain the algorithm in sufficient detail that somebody who had never performed it could do so.

Solution: I make tea in my kitchen, as follows:

1. Find the loose tea in the cupboard on the west side of the kitchen, otherwise return to step 1 tomorrow.
2. Find a tablespoon in the drawer on the west side of the kitchen, otherwise return to step 1 tomorrow.
3. Find the cup in the cupboard on the north side of the kitchen, otherwise return to step 1 tomorrow.
4. Find the kettle on the stove on the west side of the kitchen, otherwise return to step 1 tomorrow.
5. Fill the kettle at the tap on the north side of kitchen with roughly 250 mL of water.
6. Put the kettle on the stove, turn the burner knob counter-clockwise as far as it will go. If the burner doesn't light, turn the knob clockwise as far as it will go and return to step 1 tomorrow.
7. When the kettle boils, turn the knob clockwise as far as it will go, then put a tablespoon of tea and boiling water into cup (being careful not to overflow).

Part (B) [4 marks]
What tools (mental or physical) are needed to carry out the grade-school algorithm for multiplication (done in lecture) and understand the result?

Solution:

1. Positional number system.
2. Some way of recording results (pencil, chalk, pen).
3. Times table from 0×0 through 9×9.
4. Addition algorithm.

PART (C) [4 mARKS]
Convert the base-ten numbers below to their (unsigned) binary equivalents, and then perform the arithmetic operation indicated. Show your work when you carry out addition or multiplication in binary.
i) $47+53$

SOLUTION: 47 is 101111 in binary, and 53 is 110101 in binary, so
101111

$$
\begin{array}{r}
+110101 \\
\hline 1100100
\end{array}
$$

\qquad
ii) 5×9

SOLUTION: 5 is 101 in binary, and 9 is 1001 , so

$$
\begin{array}{r}
1001 \\
\times 101 \\
\hline 1001 \\
0000 \\
+1001 \\
\hline 101101
\end{array}
$$

Part (D) [4 MARKS]
Fill in the missing column of the following logical operation, where 0 is interpreted as false and 1 is interpreted as true. No explanation is required.

b_{1}	b_{2}	NOT $\left(b_{1}\right.$ OR $\left.b_{2}\right)$
0	0	
0	1	
1	0	
1	1	

Solution:

b_{1}	b_{2}	NOT $\left(b_{1}\right.$ OR $\left.b_{2}\right)$
0	0	1
0	1	0
1	0	0
1	1	0

QuESTION 2. [10 marks]
Part (a) [4 marks]
Examine the fragment of a gnumeric spreadsheet below. Notice that the formula in cell A 2 is $=A 1 * \$ B \$ 1$. Suppose you copy A2 to A3 and A4 (using the mouse to drag the lower-right corner down). What will appear in cells A2, A3, and A4? Explain why.

Solution: A2 will contain 4, since the formula says to multiply the contents of A1 times B1. A3 will contain 8, since when the formula is copied A1 increments to A 2 , while the $\$$ ensures that $\$ \mathrm{~B} \$ 1$ remains B1, so we multiply 4 times 2 . A4 will contain 16 , since the formula is incremented to A3 times $\$ \mathrm{~B} \$ 1$, or 8 times 2.
\qquad

Part (B) [4 marks]
Suppose the file words contains only the following four entries:
warthog
answer
giraffe
xylophone
Which words are produced by the following commands. Explain why.
i) grep -w [wagx].*[m-z] words

Solution: answer, since this is the only word that begins with one of the characters in the set [wagx], followed by zero or more characters, and ending with a letter in the set [$\mathrm{m}-\mathrm{z}$].
ii) grep -w [gw].....[ge] words

Solution: warthog and giraffe, since these are the only words in the file that begin with a character in the set [gw], followed by five characters, followed by a character in the set [ge].

PART (C) [2 MARKS]
Recall the algorithm from lecture and assignment 1 to find the GCD of two non-negative integers. Why do we say this is an efficient algorithm?

Solution: The algorithm takes very few steps (empirically less than twenty on the numbers we tried), and can be described very briefly.

QUESTION 3. [5 MARKs]

Consider the figure drawn (in bold lines) on a grid below. How many line segments begin and end on grid crossings? Explain your answer as fully as possible.

Solution: Each of the horizontal lines has 7 line segments of length 1 (since there are 7 possible starting points), 6 line segments of length 2 (there are 6 possible starting points), 5 of length 3 (5 possible starting points), 4 of length 4 (4 possible starting points), 3 of length 5 (3 possible starting points), 2 of length 6 (2 possible starting points), and 1 of length 7 (1 possible starting point). The sum $7+6+5+4+3+2+1$ is $(7 \times 8) / 2$ (done in class). There are 8 horizontal lines and 8 vertical lines in the figure, and they all have the same number of line segments, so the total is:

$$
2 \times 8 \times(8 \times 7) / 2=64 \times 7=448 .
$$

$$
\text { Total Marks }=32
$$

\qquad

