T1 -handed back after class, grades already posted online

CSC104 fall 2012
Why and how of computing week 6

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/104/F12/
416-978-5899

Text: Picturing Programs

Outline

algorithms questions

Notes
\square

could algorithms run the world?

Spectacular algorithm success leads to questions:

- Is there, potentially, an algorithm to solve every problem?

No

- If there are two or more algorithms solving the same problem, how do you choose? Compone efficiency
- How do you discover new algorithms?
Heuristics - tips no gualantee
- How do you maintain and improve massive, possibly buggy, algorithms?

problems without an algorithm

before electronic, programmable computers
Alonzo Church and Alan Turing showed there were many
 unsolvable algorithms

- also showed class of solvable algouithms

Classic example: Halting Problem

another example

If there an algorithm for each problem, how about one to decide whether declarative English sentences are true? How about:

This statement is false.

What should the algorithm that verifies (or not) sentences do?
algorithms that take too long

$$
\begin{array}{ll}
\text { hms that take too long } & f_{i b}(0)+f_{i b}(1)=1 \\
f_{i b}(0)-0 & f_{i b}(2)=1 \\
f_{i b}(1)-1 & f_{i b}(3)=f_{i b}(1)+f_{i b}(2) \\
& f_{i b}(b)+F_{i b} b(1) .
\end{array}
$$

An algorithm may exist, but take too long to be feasible:

Of interest from rabbit-breeding to biology to computer science (see Vi Hart), calculating Fibonacci sequence this way gets slow for numbers over 40.

an everyday (once) algorithm

Before Canada-411, we used to look up phone numbers in white pages. There are (at least) two different, correct ways to find the leaf (2-sided sheet) with the business you're looking for (or conclude it's not there).

- linear search

$$
\begin{aligned}
& \text { order } \\
& \text { steps }
\end{aligned}
$$

of a
Thous and

- binary search ~ of der

8 steps
how to solve it
it being a new problem

Clearly there's no fool-proof method, but there's some techniques that often make progress. It helps to write down the whole process:
what's required ; what's givernen name: input \rightarrow output

- Understand the problem draw pictures use symbols
- Devise (one or more) plans) breadth-first search versus depth-first search.
- Try the plan
- Look back
paper folding? Centre the patterns - so that try it out
given natural number $\uparrow \downarrow$ first fold
is visible
geed pattern need pattern "up" "down"
- Understand the problem (what's given, what's required)?
- Devise a plan chow $\#$ folds crease path ar
- small examples \rightarrow looking for a pattern.
- working backward.
- Try at least one plan (be ready to abandon it too)

Look back

Notes

UNIVERSITY OF TORONTO
\square

Notes

UNIVERSITY OF TORONTO
\square

