
CSC104 fall 2012
Why and how of computing

week 6

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/F12/

416-978-5899

Text: Picturing Programs

http://www.cdf.toronto.edu/~heap/104/F12/
http://www.picturingprograms.com


Outline

algorithms questions

Notes



could algorithms run the world?

Spectacular algorithm success leads to questions:

I Is there, potentially, an algorithm to solve every problem?

I If there are two or more algorithms solving the same

problem, how do you choose?

I How do you discover new algorithms?

I How do you maintain and improve massive, possibly

buggy, algorithms?



problems without an algorithm

before electronic, programmable

computers

Alonzo Church and Alan Turing

showed there were many

unsolvable algorithms

Classic example: Halting Problem

http://en.wikipedia.org/wiki/File:Alonzo_Church.jpg
http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg
http://en.wikipedia.org/wiki/Halting_problem


another example

If there an algorithm for each problem, how about one to decide

whether declarative English sentences are true? How about:

This statement is false.

What should the algorithm that veri�es (or not) sentences do?



algorithms that take too long

An algorithm may exist, but take too long to be feasible:

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

Of interest from rabbit-breeding to biology to computer science

(see Vi Hart), calculating Fibonacci sequence this way gets slow

for numbers over 40.

http://vihart.com


an everyday (once) algorithm

Before Canada-411, we used to look up phone numbers in white

pages. There are (at least) two di�erent, correct ways to �nd

the leaf (2-sided sheet) with the business you're looking for (or

conclude it's not there).

I linear search

I binary search



how to solve it
it being a new problem

Clearly there's no fool-proof method, but there's some

techniques that often make progress. It helps to write down the

whole process:

I Understand the problem

I Devise (one or more) plan(s)

I Try the plan

I Look back

http://www.math.utah.edu/~pa/math/polya.html


paper folding?
try it out

I Understand the problem (what's given, what's required)?

I Devise a plan

I Try at least one plan (be ready to abandon it too)

I Look back



Notes


	algorithms questions
	Notes

