

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/104/F12/
416-978-5899

Text: Picturing Programs

Outline

Algorithms

Notes

UNIVERSITY OF TORONTO

What to do with computing machines?
Algorithms! "ithout "outside" knowledge.
"simpl" _ wh.

simple sequence of feasible tume.
steps to solve a problem
deterministic (in this course)
credit Al-Khwarizmi

Examples

- multiplication
- PBJ
- Google page rank

Sticky algorithm

- Get bread, jam, open?
pb
assumption?
sliced bread.
- take knefe, place m peanut butter
- take another knife \rightarrow $j a m \rightarrow$ on top of $P B$
peanut butter bread jam \rightarrow PBJ sandwich could you explain it to a friend over the phone, who had
dock wise,
count r dorishin? never made it?
things That don't thread.
- which operations are built-in?
- what if conditions change?
- name repeated/ operations
- does sequence matter?
- wish tenife

Which end A price \rightarrow goes in \rightarrow spreads.

- which surface get pis, which get' jam?

paper folding

(ignore the diagram on the left) fold over upper surface of paper strip after one fold, it has a downward crease fold the once-folded strip again and it has one upward, two downward there are good physical reasons you can't experiment far beyond 6 folds given the number of folds, predict the pattern

For more information, and hints, see paper folding problem

The way we were

 grade school multiplication$$
\begin{gathered}
\times \times \text { VII } \\
\times \times \times \times 11
\end{gathered}
$$

\times	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

We'd memorize, and organize, the algorithm for 27×38 Much better than XXVII \times XXXVIII

Notes

UNIVERSITY OF TORONTO
\square

