Using Introduction to the Theory of Computation, Chapter 2
Outline

- gaussian multiplication
- binary search
intuition about master theorem

\[
T(n) = \begin{cases}
 c & n = 1 \\
 a_2 T(\lfloor n/b \rfloor) + a_1 T(\lfloor n/b \rfloor) + f(n) & n > 1
\end{cases}
\]

Cost recursive calls:
\[
a_1 + a_2 = q
\]

Cost splitting + recombining:
\[
(b_k)^l \rightarrow \ell (b_k)^l
\]
\[
\sum_{i=0}^{k-1} a_i (b_k^{-i})^l
\]
\[
c \cdot a^k = a \log_b n \cdot c
\]
\[
a \log_b n \cdot c
\]
intuition about master theorem

\[T(n) = \begin{cases}
 c & \text{if } n = 1 \\
 a_2 T(\lfloor n/b \rfloor) + a_1 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > 1
\end{cases} \]

\[\sum_{i=0}^{k-1} \left(\frac{a}{b^l} \right)^i \cdot (f(k))^l = n^l \sum_{i=0}^{k-1} \left(\frac{a}{b^l} \right)^i \]

\[a = b^l \Rightarrow n^l \cdot \frac{k}{b^l} = n^l \log_b n \]

If \(a > b^l \), then...
Gauss’s trick

\[xy = 2^n x_1 y_1 + x_0 y_0 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) \]

Master theorem

- \(a = \begin{cases} 3^2 \end{cases} \)
- \(b = 2 \)
- \(l = \begin{cases} 1 \end{cases} \)

Apply Master Theorem

- \(a \geq b^l \rightarrow \text{yes} \)
- \(3 \times 2 \rightarrow \text{defers} \)

Complexity \(\Theta(n \log^3 n) \) should be better than \(O(n \log^2 n) \)
Gauss’s payoff
lose one multiplication

1. divide each factor (roughly) in half
2. sum the halves
3. multiply the sum and the halves Gauss-wise
4. combine the products with shifts and adds
recursive binary search

def recBinSearch(x, A, b, e):
 if b == e:
 if x <= A[b]:
 return b
 else:
 return e + 1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return recBinSearch(x, A, b, m)
 else:
 return recBinSearch(x, A, m+1, e)

What correct?
conditions, pre- and post-

pre conditions

- x and elements of A are comparable
- e and b are valid indices, $b \leq e$
- $A[b..e]$ is sorted non-decreasing

RecBinSearch(x, A, b, e) terminates and returns index p

- $b \leq p \leq e + 1$
- $b < p \Rightarrow A[p - 1] < x$
- $p \leq e \Rightarrow x \leq A[p]$

(except for boundaries, returns p so that $A[p - 1] < x \leq A[p]$)
precondition \Rightarrow termination and postcondition

Proof: induction on $n = e - b + 1$

Base case, $n = 1$: Terminates because there are no loops or further calls, returns $x \leq A[b = p] \iff p = b = e$ is returned. $x > A[b = p - 1] \iff p = b + 1$ returned, so postcondition satisfied. Notice that the choice forces if-and-only-if.

Induction step: Assume $n > 1$ and that the postcondition is satisfied for inputs of size $1 \leq k < n$ that satisfy the precondition. Call RecBinSearch(A,x,b,e) when $n = e - b + 1 > 1$. Since $b < e$ in this case, the test on line 1 fails, and line 7 executes. Exercise: $b \leq m < e$ in this case. There are two cases, according to whether $x \leq A[m]$ or $x > A[m]$.
Case 1: \(x \leq A[m] \)

must show \(1 \leq k < n = e+1 - b \)

\(IH: P(k), 1 \leq k < n = e+1 - b \)

\(m \geq b \)
gives this

\(p > m \)
gives this

- Show that \(IH \) applies to \(RBS(x,A,b,m) \)
- Translate the postcondition to \(RBS(x,A,b,m) \)
 - \(RBS \) returns \(p \) such that
 1. \(b \leq p \leq m+1 \)
 2. \(b < p \Rightarrow A[p-1] < x \)
 3. \(p \leq m \Rightarrow x \leq A[p] \)
- Show that \(RBS(x,A,b,e) \) satisfies postcondition
 0. \(RBS \) returns \(p \) such that
 1. \(b \leq p \leq e \), since \(IH \) says \(b \leq p \leq m+1 < e+1 \),
 2. \(b < p \Rightarrow A[p-1] < x \), \(\checkmark \) directly, hence \(x \leq e \)
 3. \(p \leq e \), \(x \leq A[p] \)
 we know \(p \leq e \), must show \(x \leq A[p] \)
 \(\downarrow \)
 \(A[p] \)
 \(\downarrow \) case \(p \leq m \), then \(x \leq A[p] \) by \(IH \)
 \(\downarrow \) case \(p = m+1 \), by Case \(x \leq A[m] \)
 \(\checkmark \) list sorted, we know \(x \leq A[m] \leq A[m+1] \)
Case 2: $x > A[m]$

Show that IH applies to $\text{RBS}(x,A,m+1,e)$

Translate postcondition to $\text{RBS}(x,A,m+1,e)$

RBS returns p such that

- $m+1 \leq p \leq e+1$
- $m+1 < p \implies A[p-1] < x$
- $p \leq e \implies x \leq A[p]$

Show that $\text{RBS}(x,A,b,e)$

by IH, RBS certainly returns some p and

- $b \leq b + 1 \leq m' \leq p \leq e + 1$, by IH
- $b < p$ (always true, since $p \geq m+1 \geq b+1 > b$
- $m+1 < p$, by IH, $A[p-1] < x$
Case 2: $x > A[m]$

- Show that IH applies to $RBS(x, A, m+1, e)$
- Translate postcondition to $RBS(x, A, m+1, e)$

- Show that $RBS(x, A, b, e)$

 - $\ldots \text{ otherwise } p = m+1$, so $A[p-1] = A[m] < x$ (by Case 2)
 - $p \leq e \Rightarrow A[p] \geq x$

(by IH)
Case 2: $x > A[m]$

Conclude, by complete induction, that $RBS(x, A, b, e)$ with preconditions satisfy postconditions.

- Show that IH applies to $RBS(x, A, m+1, e)$
- Translate postcondition to $RBS(x, A, m+1, e)$
- Show that $RBS(x, A, b, e)$
what could go wrong?

- $m = \left\lfloor \frac{e+b}{2.0} \right\rfloor$
- $x < A[m]$

Either prove correct, or find a counter-example

- $b \leq m < e$
- $m = e$

 - $b = 0$

 - $e = 1$

 - $\left\lfloor \frac{1}{2} \right\rfloor = 1$

- $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$

 - $\text{RBS}(2,A,0,1)$

 - wrong index?
recursive and iterative
mergesort

MergeSort(A,b,e):
1. if b == e: return
2. m = (b + e) / 2 # integer division
3. MergeSort(A,b,m)
4. MergeSort(A,m+1,e)
 # merge sorted A[b..m] and A[m+1..e] back into A[b..e]
5. for i = b,...,e: B[i] = A[i]
6. c = b
7. d = m+1
8. for i = b,...,e:
 9. if d > e or (c <= m and B[c] < B[d]):
 10. A[i] = B[c]
 11. c = c + 1
 else: # d <= e and (c > m or B[c] >= B[d])
 13. d = d + 1
conditions, pre- and post-

- b and e are natural numbers, $0 \leq b \leq e < \text{len}(A)$.
- elements of A are comparable

- $A'[b..e]$ contains the same elements as $A[b..e]$, but sorted in non-decreasing order (use notation A' for A after calling MergeSort(A,b,e)). All other elements of A' are unchanged.
Proof of correctness of MergeSort(A,b,e) by induction on $n = e - b + 1$ for all arrays of size n,
(precondition+execution)\Rightarrow(termination+postcondition)

Base case, $1 = e - b + 1$: Assume MergeSort(A,b,e) is called with $\text{len}(A) = 1$ preconditions satisfied. Then $0 \leq e \leq b \leq 0$, so $e == b$, and the algorithm terminates with a (trivially) sorted A', satisfying the precondition.

Induction step: Assume $n \in \mathbb{N}$, $n > 1$, and for all natural numbers k, $1 \leq k < n$, that MergeSort on all arrays of size k that satisfy the precondition and run will terminate and satisfy the postcondition. Assume MergSort(A,b,e) is executed and $n = e - b + 1$.
The test on line 1 fails, and m is set to $(b + e)//2$, strictly less than e (exercise).

Does the IH apply to MergeSort(A, b, m) and MergeSort($A, m+1, e$)? Translate the IH into postconditions for MergeSort(A, b, m) and MergeSort($A, m+1, e$).

Now we need iterative correctness for the merge...
iterative correctness
partial correctness plus termination

- Preconditions plus termination imply the postcondition. Probably needs a loop invariant

- termination — construct a decreasing sequence in \mathbb{N}.