Using *Introduction to the Theory of Computation*,
Chapter 3
Outline

complexity of binary search

vexing complexity

mergesort

Divide-and-conquer

Notes

annotations
Lower bound on $T(n)$...by proof
Upper bound on $T(n)$
trouble!
Upper bound on $T(n)$

a work-around
recurrence for MergeSort

MergeSort(A,b,e):
 if b == e: return
m = (b + e) / 2
MergeSort(A,b,m)
MergeSort(A,m+1,e)
 # merge sorted A[b..m] and A[m+1..e] back into A[b..e]
for i = b,...,e: B[c] = A[c]
c = b
d = m+1
for i = b,...,e:
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
c = c + 1
 else: # d <= e and (c > m or B[c] >= B[d])
 A[i] = B[d]
d = d + 1
Unwind (repeated substitution)

\[T(n) = 2T(n/2) + n + 1 \]
Prove that T is non-decreasing

See Course Notes, Lemma 3.6 Exercise: Prove the recurrence for binary search is non-decreasing
Prove $T \in O(n \lg n)$ for general case

$T(n) = T([n/2]) + T([n/2]) + n + 1$
General case

Class of algorithms: partition problem into \(b \) roughly equal subproblems, solve, and recombine:

\[
T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lfloor n/b \rfloor) + a_2 T(\lceil n/b \rceil) + f(n) & \text{if } n > B
\end{cases}
\]

where \(B, k > 0, a_1, a_2 \geq 0, \) and \(a_1 + a_2 > 0. \) \(f(n) \) is the cost of splitting and recombing.
Master Theorem

If \(f \) from the previous slide has \(f \in \theta(n^d) \), then

\[
T(n) = \begin{cases}
\theta(n^d) & \text{if } a < b^d \\
\theta(n^d \log n) & \text{if } a = b^d \\
\theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]
1. Unwind the recurrence, and prove a result for $n = b^k$

2. Prove that T is non-decreasing

3. Extend to all n, similar to MergeSort
annotated slides