CSC236 fall 2014
automata and languages

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~csc236h/fall/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7
Outline

formal languages

FSAs

notes

annotations
some definitions

alphabet: finite, non-empty set of symbols, e.g. \{a, b\} or \{0, 1, −1\}. Conventionally denoted \(\Sigma\).

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over \{a, b\}. Convention: \(\varepsilon\) is the empty string, never an allowed symbol, \(\Sigma^*\) is set of all strings over \(\Sigma\).

language: Subset of \(\Sigma^*\) for some alphabet \(\Sigma\). Possibly empty, possibly infinite subset. E.g. \{\}, \{aa, aaa, aaaa, ...\}.

N.B.: \(\{\} \neq \{\varepsilon\}\).
Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)
more notation

string length: denoted $|s|$, is the number of symbols in s, e.g. $|bba| = 3$.

$s = t$: if and only if $|s| = |t|$, and $s_i = t_i$ for $1 \leq i \leq |s|$.

s^R: reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

st or $s \circ t$: concatenation of s and t — all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.

s^k: denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

Σ^n: all strings of length n over Σ, Σ^* denotes all strings over Σ.
language operations

\bar{L}: Complement of L, i.e. $\Sigma^* - L$. If L is language of strings over $\{0, 1\}$ that start with 0, then \bar{L} is the language of strings that begin with 1 plus the empty string.

$L \cup L'$: union

$L \cap L'$: intersection

$L - L'$: difference

$\text{Rev}(L)$: $= \{s^R : s \in L\}$

concatenation: LL' or $L \cdot L' = \{rt : r \in L, t \in L'\}$. Special cases $L\{\varepsilon\} = L = \{\varepsilon\}L$, and $L\{\} = \{\} = \{\}L$.
more language operations

exponentiation: L^k is concatenation of L k times. Special case, $L^0 = \{\varepsilon\}$, including $L = \{\}$!

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$
states needed to classify a string
what state is a stingy vending machine in based on coins?
accepts only nickles (a), dimes (b), and quarters (c),
no change given, and everything costs 30 cents
useful toy (you’ll need JRE)

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\delta & 0 & 5 & 10 & 15 & 20 & 25 & \geq 30 \\
\hline
n & 5 & 10 & 15 & 20 & 25 & \geq 30 & \geq 30 \\
\hline
d & 10 & 15 & 20 & 25 & \geq 30 & \geq 30 & \geq 30 \\
\hline
q & 25 & \geq 30 \\
\hline
\end{array}
\]
build an automaton with formalities...

quintuple: \((Q, \Sigma, q_0, F, \delta)\)

- \(Q\) is set of states, \(\Sigma\) is finite, non-empty alphabet, \(q_0\) is start state
- \(F\) is set of accepting states, and \(\delta : Q \times \Sigma \mapsto Q\) is transition function

We can extend \(\delta : Q \times \Sigma \mapsto Q\) to a transition function \(\delta^* : Q \times \Sigma^* \mapsto Q\) that tells us what state a string \(s\) takes the automaton to:

\[
\delta^*(q, s) = \begin{cases}
q & \text{if } s = \epsilon \\
\delta(\delta^*(q, s'), a) & \text{if } s' \in \Sigma^*, a \in \Sigma, s = s'a
\end{cases}
\]

String \(s\) is accepted if and only if \(\delta^*(q_0, s) \in F\), it is rejected otherwise.
example — an odd machine
device a machine that accepts strings over \(\{a, b\} \) with an odd number of \(a \)s

Formal proof requires inductive proof of invariant:

\[
\delta^*(E, s) = \begin{cases}
E & \text{if } s \text{ has even number of } a \text{s} \\
O & \text{if } s \text{ has odd number of } a \text{s}
\end{cases}
\]
float machine

$L_1 = \{0, \ldots, 9\}$
$L_2 = \{+, -\}, L_3 = \{.\}$
$L_F = \{s \in L_2^j L_1^m L_3^1 L_1^n \mid j \leq 1, m, n \geq 1\}$

Devise a machine that accepts L_F
more odd/even

L is the language of binary strings with an odd number of as, but even length
Devise a machine for L
annotated slides